
Experiences and Expectations with 

Model Based System and Software Engineering 
 

Andreas Wortmann, Martin Beet, Dirk Roßkamp 

OHB System AG, Bremen, Germany 

<Firstname>.<Lastname>@ohb.de 

 

A brief position paper summarizing obstacles and requirements on the application and introduction of 

model-based engineering from the perspective of and with an emphasis on (space segment) software 

engineering. 

Projects for a long time have engaged ideas of model-based engineering in various flavors in order to 

optimize quality and efficiency of development. In general, there activities have been carried out in 

isolated applications not sharing data, structure and processes. At ADCSS 2016 some examples have 

been presented. They range from flight software development with Rhapsody in C, simulator software 

based on SMP, SMP2 and ECSS-SMP, hardware/software codesign for specific functions to 

requirements engineering and systems engineering with SysML. 

Common misconceptions and obstacles 

While MBSE is around for quite some time there are still quite some misconceptions present. From a 

language point of view most prominent is the term 'model' itself. With respect to MBS(S)E a model is 

not a simulator and a model does not refer to a spacecraft model like the EM, PFM or FM. Secondly, 

MBSE commonly is mistakenly put on a level with using UML or SysML. Many new terms with unclear 

or overlapping semantics have been introduced, including: digital clone, digital twin, digitalization, 

digital continuity and many more. Their use sometimes seems rather arbitrary. 

The introduction of MBSE methods is a significant change in the way engineers interact and think their 

projects. It's a long-term process, but there is an implicit expectation that the Return of Invest is quickly 

achievable in short term. Furthermore, it's blinded to think that everything will be better, more 

efficient and cheaper, but we don't have to change our way of thinking and invest in related 

development processes. The assumption that all elements (e.g. software source code, configuration 

tables) with heritage can be continued to be used without modification in general is not true. Different 

tools and infrastructure call for different artifacts. On the other side, it's a misconception that replacing 

artifacts like software code with models inadvertently lead to loss of heritage and previous knowledge. 

In fact, the opposite is true: If correctly realized the prior knowledge and good design pattern are 

rigorously applied to all functional code (functions with pre-existing code and new functions) and the 

heritage is in reuse of implementation concepts and pattern rather than in source code. This is possible 

by raising the level of abstraction when actually implementing. With the SAVOIR/OSRA ESA is doing 

exactly this for harmonizing onboard software architecture. 

Ongoing activities 

At ESA a plurality of activities are carried out striving towards model centric engineering, including the 

MB4SE and OSMoSE initiatives as well as the various SAVOIR groups and the EGS-CC. At OHB such 

activities are supported and the internal organization and workflows are aligned. Preceding activities 

are identified and connect whenever possible in terms of processes and data flow. Various tools and 

approaches are assessed, including UML based modelling and domain specific languages, and serve a 

step-wise improvement of established processes and tools. 



Essential Requirements 

From the experience made so far, some basic requirements against an envisioned model-based 

engineering environment and platform can be drawn. These are presented in the following. 

Todays' systems are large in terms of size and complexity and they are expected to grow even more in 

future. The engineering platform required must be capable to handle such large systems and keep up 

with it expected future growth. 

Collaboration is essential in large engineering projects. A multitude of different engineering disciplines 

are working together on a shared model. Two needs arise that at a first glance seem contradicting: On 

the one hand an engineer requires a stable baseline to base his work on as continuous changes 

introduced by colleagues while working will stifle progress. On the other hand, an engineer always 

requires the latest information in order to not design the wrong system. In software engineering 

transaction-based collaboration tools like git have been introduced and solve these challenges very 

successfully. In cooperative systems engineering environments such tools will be beneficial as well. In 

addition to pure transaction based revisioning systems it must be possible (for instance in a concurrent 

engineering session) to collectively edit a model in a google docs style, where one actually can observe 

the colleague's cursor. 

The tools user interface (UI) is important for acceptance and efficient operation. Overwhelming 

complexity with 1000-button menus for doing simple jobs are not suitable and error prone. The UI 

should be scalable with the use case and customized to the engineering task. While the user expects 

rigorous failure and consistency checks as well as simple analyses to be carried out interactively the 

tooling must remain live even with very large model being handled. A system that fades for 30 seconds 

while editing or that requires a "make" button to trigger long-lasting activities that put the engineer 

on hold will not be accepted in the long term. This specifically holds for models that represent 

executable systems and test cases. 

It's important to model more domain specific aspects of a system than what is achievable when using 

UML/SysML as these are general purpose languages. While they can be extended via profiles etc. 

respective models are not very intuitive to read. Multiple paradigms and multiple notations will be 

required to optimize meta-models and languages for their application in their respective domain. This 

ranges prose-style (high level requirements) declarative (type system), behavioral (test, math 

expression) and structural (deployment) languages with textual (requirements), tabular (lookup), 

graphical (state machine, deployment) or symbolic (math, chemistry) notations. 

Outlook 

So, how could such an engineering framework look like? Tools including MS Excel and Word that 

currently are used for connecting artifacts from different engineering disciplines can easily be 

substituted by a model-based environment. But from the pure amount of highly specialized tools, it 

seems obvious that there will not be the one "BIG NEW TOOL" that will do everything. Established 

tools need to collaborate and share a common model. The focus should be on a shared model that can 

either be directly maintained or that external tools interface with, rather than on an exchange of 

models among external tool. Such integration calls for a data repository/hub that provides the 

mentioned collaboration features and it requires the specialized tools to provide interfaces that allow 

transaction-based or continuous exchange of data. 

Due to the specifics of space engineering and peculiarities of the various stakeholder, it is not expected 

that a suitable out-of-the-box tool will ever be on the market. However, in a collective effort agencies 

and industry should be able to establish a customizable framework meeting the requirements. 


