
Capella to TASTE MBSE bridge

2020

Model Based Space Systems and Software Engineering - MBSE2020

2

Agenda

• Project background and objectives

• Implementation
• Plugin

• Model

• Model mapping

• Workflow

• Validation
• MTM

• Lessons Learned

2020

B A C KG R O U N D A N D O B J E C T I V E S

2020

4

TASTE by ESA

• "A tool-chain targeting heterogeneous embedded systems, using a
model-based development approach"

• System architecture – AADL

• Data – ASN.1 (with ACN)

• Behaviour – SDL (but can also be C, Ada...)

• Focused on software (but can accommodate FPGAs)

• Can generate executables targeting x86, SPARC, ARM and MSP430

• https://taste.tools and https://taste.tuxfamily.org/wiki/

2020

https://taste.tools/
https://taste.tuxfamily.org/wiki/

5

Capella by the Eclipse Foundation

• "A comprehensive, extensible and field-proven MBSE tool and method
to successfully design systems architecture"

• Based on Eclipse IDE (highly customizable)

• Built around the Arcadia method

• Provides a layered model to capture user needs and requirements, perform
system analysis and design a solution
• User interacts with the model through views

• Cross-domain (both software and hardware)

• Cannot generate code (by itself alone)

• https://www.eclipse.org/capella/

2020

https://www.eclipse.org/capella/

6

The consortium and the goal

• The Capella to TASTE MBSE bridge development was a sub-activity
within MBSE Implement project founded by ESA

• The consortium consisted of:
• Creotech Instruments (prime contractor)

• N7 Space (subcontractor)

• The goal of the sub-activity was to develop a bridge that would allow
to apply an MBSE based approach throughout the entire software
product lifecycle, from high-level cross-domain analysis to
implementation, testing and deployment

2020

I M P L E M E N TAT I O N

2020

8

Plugin

• The bridge is realized as a Capella (Eclipse) plugin
• Written in Java

• Seamless integration:
• Context menus

• Toolbar (with additional TASTE actions)

• Dialogs

• Standard preferences

2020

9

Model

• Capella is high-level, abstract, TASTE is mid-to-low-level, concrete

• Capella data and architecture is well defined

• Capella behaviour model is too abstract

• Model needs to be constrained – certain constructs are not supported
• e.g. unconstrained data sizes, some expressions in the data model, shared data,

synchronous inter-node communication...

• Model needs to be supplemented – constructs must be concretized
• e.g. implementation language, target processor or device config...

• Provided through string properties

• The plugin performs checks and produces warnings and errors
• The final verification is performed by TASTE

2020

10

Model mapping - data

2020

*Capella focuses on data semantics, so ACN encoding generation is not supported (can be provided manually); UPER can be used instead

*Some expressions are evaluated during ASN.1 generation

11

Model mapping - architecture

2020

*Functional Exchange is the most complex construct to map between Capella and TASTE

12

Workflow

• Define the data model in Capella

• Define the architecture in Capella

• Apply the required properties

• Export (a selection of) the data model to ASN.1

• Export (a selection of) the architecture to AADL

• Perform post-processing (ASN.1 -> AADL, code skeletons)

• Define behaviour in TASTE

• Compile, deploy, test

2020

13

Capella data and TASTE ASN.1

2020

142020

Capella physical architecture

152020

TASTE Interface and Deployment Views

VA L I D AT I O N

2020

17

MTM

• Mass-and-Thermal Mockup, based on STM32F407 MCU (32-bit ARM)

• Hardware and Capella model were developed by Creotech

• Capella model was transformed into TASTE model using the plugin

• Behaviour was modelled in SDL and C by N7 Space

• C code based on an alternative twin software manually coded by Creotech

• TASTE RS-485 driver was implemented by N7 Space in Ada

• Code was deployed onto the MTM hardware

• Automated test scenarios, defined by Creotech, were implemented in Python by
N7 Space based on code auto-generated from MSC diagrams created in TASTE

• Result: everything works!

2020

18

Lessons Learned

• Environment setup may be non-trivial

• (Pre-Kazoo) Project setup was cumbersome

• (Pre-Kazoo) Project build was slow

• MBSE ensured that the logic was sound
• but there were also the "small implementation details" - bugs were found in drivers,

and memory corruption debugging was time consuming

• Memory consumption was a challenge ("only" 128 kB of accessible RAM)

• Kazoo, introduced when this project was underway, solved many of these issues!

• Some of the other issues were solved later in the Tiny Runtime to Run Model-
Based Software on CubeSats project (a similar complexity fits into 54 kB of total
memory)

2020

19

Lessons Learned

• Naming convention is important

• Inheritance support has limitations

• Sizes must be defined and constrained

• Use built-in strings

• Be aware of the implementation constraints

• Remember that TASTE handles the communication layer on its own

• A single GUI improves usability and makes automated testing much easier

• When behaviour is implemented, iteration is getting expensive

2020

20

Lessons Learned – the good part

• MBSE makes it easier to reach an unambiguous understanding between partners

• MBSE ensures strict adherence of the implementation to the design
• interfaces just match!

• MBSE relieves the implementer from some low-level tasks, potentially improving
delivery speed and cost

• What's next?
• Optimize runtime (initial work done for MSP430, some other platforms don't need it)

• Make the tooling more user-friendly (in progress)

• Provide more drivers, more runtimes

2020

S U M M A R Y

2020

22

Project achievements

• Capella data and physical architecture model can be now exported to
TASTE ASN.1 and AADL models
• Capella can be used for user needs capture, requirement tracing, system

analysis and high-level design

• The ASN.1 and AADL models can be supplemented by behaviour
definition (SDL, C or Ada...) in TASTE
• TASTE can be used for code generation (full or partial)

• Entire software development cycle is supported by an MBSE based
approach

2020

23

Thank you for your attention

2020

Michał Kurowski
mkurowski@n7space.com

Michał Mosdorf
mmosdorf@n7space.com

Michał Kocon
michal.kocon@n7space.com

+48 22 299 20 50
www.n7space.com

mailto:mkurowski@n7space.com
mailto:rbabski@n7space.com
mailto:mkurowski@n7space.com
http://www.n7space.com/

