L.hl Capella to TASTE MBSE bridge

SFPHLCE

Model Based Space Systems and Software Engineering - MBSE2020

2020

Agenda

* Project background and objectives

* Implementation
* Plugin
* Model

 Model mapping
* Workflow

e \alidation
 MTM
e Lessons Learned

SPARACE

BACKGROUND AND OBJECTIVES

TASTE by ESA

* "A tool-chain targeting heterogeneous embedded systems, using a
model-based development approach”

e System architecture — AADL

e Data — ASN.1 (with ACN)

e Behaviour —SDL (but can also be C, Ada...)

e Focused on software (but can accommodate FPGAS)

* Can generate executables targeting x86, SPARC, ARM and MSP430
* https://taste.tools and https://taste.tuxfamily.org/wiki/

EEEEE 2020

https://taste.tools/
https://taste.tuxfamily.org/wiki/

Capella by the Eclipse Foundation

* "A comprehensive, extensible and field-proven MBSE tool and method
to successfully design systems architecture”

* Based on Eclipse IDE (highly customizable)
* Built around the Arcadia method

* Provides a layered model to capture user needs and requirements, perform
system analysis and design a solution
* User interacts with the model through views

e Cross-domain (both software and hardware)

e Cannot generate code (by itself alone)

e https://www.eclipse.org/capella/

SPARACE

https://www.eclipse.org/capella/

EEEEE

©
®
The consortium and the goal \ﬁ\ﬁ LLUL e

Instruments 5.A.

* The Capella to TASTE MBSE bridge development was a sub-activity
within MBSE Implement project founded by ESA

e The consortium consisted of:

* Creotech Instruments (prime contractor)
* N7 Space (subcontractor)

* The goal of the sub-activity was to develop a bridge that would allow
to apply an MBSE based approach throughout the entire software
product lifecycle, from high-level cross-domain analysis to
implementation, testing and deployment

IMPLEMENTATION

Plugin

* The bridge is realized as a Capella (Eclipse) plugin

* Written in Java

* Seamless integration:
* Context menus

* Toolbar (with additional TASTE actions)

* Dialogs
e Standard preferences

= DemoWorkspace - Capella

File Edit Navigate Search Project Run TASTE Exporters Window Help

‘E v L ica Exportto TASTE Ctrl+Alt+A
i Tools > Generate DataView.aad|
e Capella Project Explorer 82 h

Generate code skeletons
Edit project in TASTE
Edit function in TASTE
Build system

Select a name to find
? = any character, * = any string

Itype filter text

=3 CapellaTastePluginDemo

SPARACE

el subset selection

Please select the System Madel elements to rited in AADL:
= [¥EGu

V[Provide Ul

« [#[@Probecantralier
[acauire data

« (@] Heatarcantrollar
V[Control heater

+ (W RemeteProcess

- Iv(@Process
WESimulate heat dynamics

- (V@Frobe
V@ Handle temperature measurement

select Al Dasslect Al

7 cancel ox

2020

v (= Data
(= Predefined Types

(= Units

v (= Demn

= Mission
v B Logical Arc
& Logical

= Capabil |

= Interfac %o

= Data
%a Logical
Logical
(= Logical
v £ Physical Ar
&= Physica
(= Capabil

& Interfac

& Data

A
B

%g Physica Sg

4F] Physica

(= Physica

£3 EPBS Archif
(= Representation
Lessons Learned B

Add Capella Element
New Diagram / Table...
Open Diagram / Table...

Copy Qualified Name
Search and replace
Cut

Copy

Paste

Delete

Move Up

Sort Content

Sort Selection

Move Down

Undo Refresh diagram on opening

Redo

Show in Semantic Browser
Show in Diagram Editor
Show Impact Analysis...

Send to Fast Linker View
Send to Mass Editing View

Send to Mass Visualization View

Export to TASTE
Edit in TASTE

Refresh All Sub Representations

Remove Hidden Elements

Validate Model
REC /RPL
Patterns
Transitions
Wizards

Allocation Management

Fragment...

Progress Monitoring

Ctrl+Shift+F
Ctrl+X
Ctrl+C
Ctrl+V

Delete

Ctrl+PageUp

Ctrl+PageDown
Ctrl+Z

Ctrl+Y

F9

F10

Model

 Capellais high-level, abstract, TASTE is mid-to-low-level, concrete

e Capella data and architecture is well defined

e Capella behaviour model is too abstract

* Model needs to be constrained — certain constructs are not supported

e e.g. unconstrained data sizes, some expressions in the data model, shared data,
synchronous inter-node communication...

* Model needs to be supplemented — constructs must be concretized
* e.g. implementation language, target processor or device config...
* Provided through string properties

* The plugin performs checks and produces warnings and errors
e The final verification is performed by TASTE

SPARACE

Model mapping - data

Capella data model element ASN.1 data model element

Data Package module

Class SEQUENCE

Union CHOICE embedded in a SEQUENCE

Collection (ordered or unordered) SEQUENCE OF or SET OF

Boolean Type BOOLEAN

Boolean Literal value

Enumeration ENUMERATED

Enumeration Literal ENUMERATED member and, if defines a
Numeric Domain Value, VALUE

Numeric Type INTEGER. or REAL

String Type TAS5String

Physical Quantity INTEGER. or REAL

Unit comment

MNumeric Reference value, only if embedded

Literal Numeric Value value

Unary Expression N/A

Bmnary Expression N/A

Lateral String Value value

String Reference value, only if embedded

Complex Value N/A

Complex Value Reference N/A

Enumeration Reference N/A

Collection Value N/A

Collection Value Reference N/A

Property SEQUENCE member

Class Operation N/A

Parameter N/A

*Capella focuses on data semantics, so ACN encoding generation is not supported (can be provided manually); UPER can be used instead

sPRcE TSome expressions are evaluated during ASN.1 generation 2020

Model mapping - architecture

Capella physical architecture | AADL model element
model element

Node Physical Component | PACKAGE with PROCESS:

(top-level) SYSTEM in DeploymentView package with PROCESSOR and PROCESS;
SUBCOMPONENT of Deployment View SYSTEM:
Physical Actor PACKAGE with PROCESS;

SYSTEM m DeploymentView package with PROCESSOR and PROCESS;
SUBCOMPONENT of Deplovment View SYSTEM:

Physical Link BUS:

SUBCOMPONENT of Deployment View SYSTEM:
CONNECTION of Node Physical Component s SYSTEM;
CONNECTION of Deployvment View SYSTEM.

Physical Path BUS:

SUBCOMPONENT of Deployment View SYSTEM:
CONNECTION of Node Physical Component s SYSTEM:
CONNECTION of Deplovment View SYSTEM.

Physical Port DEVICE in Node Physical Component’s PACKAGE:
SUBCOMPONENT i Node Physical Component’'s SYSTEM.
Physical Function PACKAGE with SYSTEM:

SUBCOMPONENT of Interface View SYSTEM:
SUBCOMPONENT of Node Physical Component s SYSTEM.

Functional Exchange SUBPEROGEAM in Physical Function’s SYSTEM:
SUBPROGFRAM ACCESS in Physical Function's SYSTEM;
CONNECTION 1n Interface View SYSTEM.

Exchange Item FEATURE 1n Functional Exchange's SUBPROGRAM.

*Functional Exchange is the most complex construct to map between Capella and TASTE

SPACE 2020

Workflow

* Define the data model in Capella

 Define the architecture in Capella

* Apply the required properties

e Export (a selection of) the data model to ASN.1

e Export (a selection of) the architecture to AADL

e Perform post-processing (ASN.1 -> AADL, code skeletons)
* Define behaviour in TASTE

* Compile, deploy, test

EEEEE

Capella data and TASTE ASN.1

(2 Demo Data Package

(

Q ExampleClass

|

~5 numericProperty : Integer
—5 isValid : Boolean
5 [1.maximumNumberOfStatuses] status : ExampleStatus

e

[1.maximumColléctionSize]

ExampleCollection

]

T [minCard] =1
T [m

axCard] maximumCollectionSize = 32

J

/*gfshort

(= Predefined Types
E Char @ Boolean Byte
I [minLength] =1 T True = TRUE T [min] =0
T [maxLength] =1 T False = FALSE I [max] =255

UnsignedLonglLong
T [min] =0

‘ Double ‘ Unsignedinteger
L 1 [Tmin =0

E Longlong

@ Long

[M

E UnsignedLong String
T [min] =0]

g Integer

’Q UnsignedShort

| L

T [min] =0

% Float

ExampleStatus Ig Constrainedinteger
EC idle T [min] =16
EL off T [max] =32
EL standby
EC busy
SPACE

2020

Demo-Data-Package DEFINITIONS AUTOMATIC TAGS

IMPORTS
TBoolean,
TLong
TInteger
FROM Predefined Types

ExampleStatus ::=
idle,
off
standby
busy

ENUMERATED {

ConstrainedInteger ::= TLong(l6..32)
ExampleClass SEQUENCE {
numericProperty TInteger,
isValid TBoolean
status SEQUENCE (SIZE(.1..8))

ExampleCollection

SET (SIZE(1..32))

END

. := BEGIN

OF ExampleStatus

OF ExampleClass

Capella physical architecture

i g 6U

MM

D) command data acquisition

D=f) report acquired data

@ Provide GUI

D) command heater controll

D) command probe

I DmJreport probe data

D) ProbeControl

Def) Ethernet

&g HeaterController

3% Contral heater[3

D) HeaterControl

RemoteProcess

D] command heater

3

SPARACE

2020

{3 @ Provide heating [3

Simulate heat

® dynamics

D=§) provide heating power

TE Interface and Deployment Views

Simulate_heat_dynamics

measure_temperature

l_f

Provide_heating

command_heater

command_heater
Control_heater

command_heater_contro..

SPARACE

-

measilré:ﬁehperatum

Handle_temperature_measurement

reporinprobes rolba
3

repotinprobprobia

Acquire_data

|command_heater_controll

Provide_GUI

2020

deploymentiew_Ethernet_RemoteProcess_PP_1_Ethernet

deploymantview_Ethd

et MMI_PP_1_Ethermet

VALIDATION

MTM

Mass-and-Thermal Mockup, based on STM32F407 MCU (32-bit ARM)

Hardware and Capella model were developed by Creotech

Capella model was transformed into TASTE model using the plugin

Behaviour was modelled in SDL and C by N7 Space

e Ccode based on an alternative twin software manually coded by Creotech

TASTE RS-485 driver was implemented by N7 Space in Ada

Code was deployed onto the MTM hardware

* Automated test scenarios, defined by Creotech, were implemented in Python by
N7 Space based on code auto-generated from MSC diagrams created in TASTE

* Result: everything works!

SPARACE

Lessons Learned

* Environment setup may be non-trivial
* (Pre-Kazoo) Project setup was cumbersome

* (Pre-Kazoo) Project build was slow

MBSE ensured that the logic was sound

* but there were also the "small implementation details" - bugs were found in drivers,
and memory corruption debugging was time consuming

Memory consumption was a challenge ("only" 128 kB of accessible RAM)

Kazoo, introduced when this project was underway, solved many of these issues!

Some of the other issues were solved later in the Tiny Runtime to Run Model-
Based Software on CubeSats project (a similar complexity fits into 54 kB of total
memory)

SPARACE

Lessons Learned

* Naming convention is important

Inheritance support has limitations

Sizes must be defined and constrained

Use built-in strings

Be aware of the implementation constraints

Remember that TASTE handles the communication layer on its own

A single GUI improves usability and makes automated testing much easier

When behaviour is implemented, iteration is getting expensive

SPARACE

Lessons Learned — the good part

* MBSE makes it easier to reach an unambiguous understanding between partners

 MBSE ensures strict adherence of the implementation to the design
* interfaces just match!
* MBSE relieves the implementer from some low-level tasks, potentially improving
delivery speed and cost

* What's next?
* Optimize runtime (initial work done for MSP430, some other platforms don't need it)

* Make the tooling more user-friendly (in progress)
* Provide more drivers, more runtimes

SPARACE

SUMMARY I

EEEEE

Project achievements

 Capella data and physical architecture model can be now exported to
TASTE ASN.1 and AADL models

* Capella can be used for user needs capture, requirement tracing, system
analysis and high-level design

* The ASN.1 and AADL models can be supplemented by behaviour
definition (SDL, C or Ada...) in TASTE

* TASTE can be used for code generation (full or partial)

* Entire software development cycle is supported by an MBSE based
approach

Thank you for your attention

Michat Kurowski
mkurowski@n7space.com

SRPHLCE Michat Mosdorf
mmosdorf@n7space.com

Michat Kocon
michal.kocon@n7space.com

+48 22 299 20 50
www.n7space.com

SPACE 2020

mailto:mkurowski@n7space.com
mailto:rbabski@n7space.com
mailto:mkurowski@n7space.com
http://www.n7space.com/

