
Model Based Space System and Software Engineering – MBSE 2020

CoRA-SAGE: The lessons learnt from AOCS/GNC algorithms deployment in TASTE

Antonio Figueroa González

2 www.aeroespacial.sener
© SENER Aeroespacial, S.A.U. – Getxo 2019

Content

• Overview of CoRA-SAGE Project

• AOCS/GNC development flow: From Simulation to HW implementation

• CoRA-SAGE as TASTE use case

• Lessons Learnt

3 www.aeroespacial.sener
© SENER Aeroespacial, S.A.U. – Getxo 2019

CoRA SAGE Overview

4 www.aeroespacial.sener
© SENER Aeroespacial, S.A.U. – Getxo 2019

CoRA-SAGE Overview

• Compact Reconfigurable Avionics (CoRA) is a co-engineering activity involving

AOCS&GNC, software engineering and on-board data handling

• Objective: to prototype an in-flight reconfigurable avionics system

5 www.aeroespacial.sener
© SENER Aeroespacial, S.A.U. – Getxo 2019

CoRA-SAGE Overview

CoRA
Smart AOCS Elements

(SAGE)

CoRA
Reconfigurable Data

Handling Core
(RDHC)

CoRA
Model Based Avionics

Design
(MBAD)

Avionics Laboratory at ESTEC

AOCS Unit(s)
Stimuli GSE(s)

EGSE

AOCS models
Legacy code

COTS BB (HW&SW)

EBB of the CRDHC
EGSE

HW & SW MBADS
CoRA-SAGE SW binaries

ESA

HDL IP-cores
SW Library

• CoRA has three branches:

1. RDHC: Reconfigurable Data Handling Core

2. SAGE: Smart AOCS/GNC Elements

3. MBAD: Model Based Avionics Design

6 www.aeroespacial.sener
© SENER Aeroespacial, S.A.U. – Getxo 2019

CoRA-SAGE Overview

• CoRA has three branches… As a result, the Exchange of information, models and code was

critical:

• Each branch is formed by a different consortia

• The evolution of each branch is strongly interlinked to the others

• There was not a company responsible of the overall system

7 www.aeroespacial.sener
© SENER Aeroespacial, S.A.U. – Getxo 2019

CoRA-SAGE Overview

CoRA-SAGE Objectives:

• Develop AOCS/GNC to be exercised in the

reconfigurable avionics

• Develop the Electronic Ground Support Equipment,

which includes:

• Electrical interfaces of simulated AOCS

components (GNSS, SAS, IMU, FADS, RCS, RW)

with the Avionics

• Simulation of sensors, actuators and dynamics-

kinematics and environment

• Optical Ground support equipment for the STR

• Stimulation of a Star Tracker Unit (HIL)

8 www.aeroespacial.sener
© SENER Aeroespacial, S.A.U. – Getxo 2019

v
DIGANIF

Analog

UART

DAC

FPGA (Tacho)

DAC

SpW Board

Elegant Bread Board

SpW

GR740

BRAVE

Medium

FPGA

GR718

RDHC EGSE

MBAD EGSE

CoRA-SAGE Overview

Overall Architecture

9 www.aeroespacial.sener
© SENER Aeroespacial, S.A.U. – Getxo 2019

AOCS/GNC development flow:

From Simulation to HW

10 www.aeroespacial.sener
© SENER Aeroespacial, S.A.U. – Getxo 2019

CoRA-SAGE AOCS/GNC development flow

• CoRA-SAGE selected Space Rider reusable servicing vehicle as strawman

test configuration.

• From the full set of the Space Rider mission, SENER included in CoRA-SAGE

the Fine Pointing Mode (FPM), Safe Mode (SM) and Re-Entry Mode (REM),

which are representative of the AOCS/GNC modes present in any space

mission

• The Functional Engineering Simulator as well as the AOCS/GNC modes were

developed in Matlab/Simulink

11 www.aeroespacial.sener
© SENER Aeroespacial, S.A.U. – Getxo 2019

CoRA-SAGE AOCS/GNC development flow

Dynamics-Kinematic and Environment; and Sensors and Actuators to be executed by EGSE

AOCS/GNC modes to be deployed in the Bread-Board

System interfaces

12 www.aeroespacial.sener
© SENER Aeroespacial, S.A.U. – Getxo 2019

CoRA-SAGE AOCS/GNC development flow

• The design of the AOCS/GNC modes should be modular and allow to

reconfigure the AOCS/GNC functions partitioning between hardware and

software implementations, hence allowing the implementation of the same

algorithm both in FPGA or in the processor

• Thus, AOCS/GNC shall comply with the pointing and performances requirement

using a fixed-point implementation

13 www.aeroespacial.sener
© SENER Aeroespacial, S.A.U. – Getxo 2019

CoRA-SAGE AOCS/GNC development flow

• AOCS/GNC shall comply with the pointing and performances requirement using a

fixed-point implementation… Thus, many development steps were required:

• AOCS/GNC algorithms design using floating point representation

• Demonstration of performances

• AOCS/GNC conversion into fixed-point

• Demonstration of performances

• Automatic Code Generation

• Verification of the generated code in an emulated processor

• Embedding of AOCS/GNC into the CoRA platform

• Verify the HIL closed loop features

• Closed Loop tests at CoRA System Level

14 www.aeroespacial.sener
© SENER Aeroespacial, S.A.U. – Getxo 2019

CoRA SAGE as TASTE use case

15 www.aeroespacial.sener
© SENER Aeroespacial, S.A.U. – Getxo 2019

CoRA-SAGE as TASTE use case

TASTE tool served to centralize the interfaces definition, which affects to:

• FES in Matlab/Simulink environment

• EGSE interfaces provision

• Data Handling Core interfaces

• Digital/Analogue converter

AOCS/GNC

• AOCS/GNC design

• EGSE design

• CoRA-RDHC and

CoRA-MBAD projects

16 www.aeroespacial.sener
© SENER Aeroespacial, S.A.U. – Getxo 2019

CoRA-SAGE as TASTE use case

• AOCS/GNC algorithms design using floating point representation

• Demonstration of performances

• AOCS/GNC conversion into fixed-point

• Demonstration of performances

• Automatic Code Generation

• Verification of the generated code in an emulated

processor

• Embedding of AOCS/GNC into the platform

• Verify the HIL closed loop features

• Closed Loop tests at CoRA System Level

17 www.aeroespacial.sener
© SENER Aeroespacial, S.A.U. – Getxo 2019

CoRA-SAGE as TASTE use case

TASTE tool served to centralize the interfaces, and made compatible the

Simulink algorithms with the TASTE environment:

1. Interface Definition in TASTE

2. TASTE generates the AOCS/GNC interfaces in Matlab/Simulink

3. The AOCS/GNC algorithms are easily plugged into the TASTE skeletons in

Matlab/Simulink, being compatible with the rest of the FES

This allowed:

• Sharing the AOCS/GNC models and code with the SAGE-SW team and the

other CoRA projects, assuring compatibility with the MBAD system

• Incremental code verification from the early project phases

18 www.aeroespacial.sener
© SENER Aeroespacial, S.A.U. – Getxo 2019

CoRA-SAGE as TASTE use case

Makes the generated code

compatible

Open loop tests Infrastructure OL VerificationVariables definition in

TASTE

1 2 3 4

The TASTE features for early verification and testing of the generated software (GUIs and Python scripts)

were employed to verify the deployment

19 www.aeroespacial.sener
© SENER Aeroespacial, S.A.U. – Getxo 2019

CoRA-SAGE as TASTE use case

• AOCS/GNC algorithms design using floating point representation

• Demonstration of performances

• AOCS/GNC conversion into fixed-point

• Demonstration of performances

• Automatic Code Generation

• Verification of the generated code in an emulated processor

• Embedding of AOCS/GNC into the platform

• Verify the HIL closed loop features

• Closed Loop tests at CoRA System Level

• The open loop tests verification in TASTE paved the way to deploy successfully the AOCS/GNC

modes both on the COTS-BB and on the Elegant-BB (definitive BB designed for CoRA)

• It served to

• Verify that auto-generated code

• Implement changes in the AOCS/GNC algorithm design quickly

20 www.aeroespacial.sener
© SENER Aeroespacial, S.A.U. – Getxo 2019

CoRA-SAGE as TASTE use case

It served to implement changes in the AOCS/GNC algorithm design quickly while

respecting the defined interfaces: a real example

• After the Critical Design Review of CoRA-SAGE, it was reported by CoRA-RDHC

that the AOCS/GNC modes did not fit into the FPGA

• It was decided to split the AOCS/GNC modes in smaller functions

• Thus, CoRA-SAGE team was to modify the design, include extra interfaces and

verify again the deployment in TASTE…

• The verification approach fasten this process!

21 www.aeroespacial.sener
© SENER Aeroespacial, S.A.U. – Getxo 2019

CoRA-SAGE as TASTE use case

Overall Classical Verification Approach

• Algorithm Design

• Code specification / autocoding reqs.

• Coding / automatic code generation

• Coding of additional SW layers to

deploy the AOCS/GNC mode into the

target platform

• SW validation

• Algorithm V&V in the avionics test

bench

• Algorithm Design

• Interface definition in TASTE and

automatic code generation

compatible with TASTE

• Verification in TASTE with an

emulated processor

• SW/HW partitioning from TASTE

Verification using TASTE

22 www.aeroespacial.sener
© SENER Aeroespacial, S.A.U. – Getxo 2019

CoRA-SAGE as TASTE use case

Classical Verification Approach Verification using TASTE

• Algorithm design changes after CDR

imply repeating a great effort

• SW/HW implementation requires

manual partitioning

• Algorithm design changes after CDR

do not imply a high effort

• The same tool:

• Defines the IF,

• Integrates the automatic

generated code (and is per se

compatible with it)

• Serves to deploy the AOCS/GNC

modes in to the target

• Allows SW/HW partitioning

23 www.aeroespacial.sener
© SENER Aeroespacial, S.A.U. – Getxo 2019

Lessons Learnt

24 www.aeroespacial.sener
© SENER Aeroespacial, S.A.U. – Getxo 2019

Lessons Learnt

• Centralized Interfaces:

• Successful approach: CoRA-SAGE SW and AOCS teams and other parties

could share easily the TASTE models

• Changes in the AOCS algorithms (implemented in Matlab/Simulink) did not

affect the TASTE infrastructure, hence it allowed quick verification tests

• Verification using TASTE:

• It fastened the integration of AOCS modes - BreadBoard - EGSE

• Thanks to this approach, we did not find any-flaws during the integration

of AOCS/GNC modes with the other elements due to the AOCS/GNC

implementation

25 www.aeroespacial.sener
© SENER Aeroespacial, S.A.U. – Getxo 2019

Lessons Learnt

• About TASTE:

 Easy to plug and test different SW pieces (pure C-code, Matlab/Simulink,

interface drivers…)

 Emulation of Linux and GR740 processors served to check from the beginning

that the code implementation was correct

 What about increasing the list of emulated processors?

• Some cons…

• Sometimes, it was hard to debug very little mistakes

• There is no guide for creating the test infrastructure and execution… We

asked for some help at the beginning! The tests infrastructure implied:

• Manipulating the ‘MSC’ interface

• Extract an auto-generated skeleton

• Modify it and run it via python

