
TASTE: a toolchain for multicore TSP applications

Laura Gouveia1, Maxime Perrotin2, Thanassis Tsiodras3, Jérôme Hugues4, Daniel Silveira5

1 Laura Gouveia, GMV, lasequeiragouveia@gmv.com
2 Maxime Perrotin, ESA, maxime.perrotin@esa.int

3 Thanassis Tsiodras, ESA, thanassis.tsiodras@esa.int
4 Jérôme Hugues, CMU/SEI, jhugues@andrew.cmu.edu

5 Daniel Silveira, GMV, daniel.silveira@gmv.com

Keywords: Model-Based, Model Transformation, TASTE, AIR, AADL.

1 Introduction

TASTE, “The ASSERT Set of Tools for Engineering” [1], is a development environment dedicated to embedded,

real-time systems. It can be used to design small to medium-size systems, relying on formal languages and based

on the concept of building "correct by construction" software. It has been recently improved to include support

for Time and Space Partitioning (TSP) architectures, specifically GMV’s AIR hypervisor [2], and improve code

generation performance and tool expandability. In this, we addressed the challenge of generating an Execution

Platform with support for multiple partitions on a multicore CPU. TASTE’s new TSP functionalities are being

implemented in a complex use case, the EagleEye OBSW, deployed on a LEON4-N2X board [4] using AIR with

TSP and RTEMS RTOS in multicore [5].

2 Deploying a multicore TSP application using TASTE

Deploying a TSP application using TASTE is not different that a regular TASTE application. In the following,

we detail the extensions we performed on the various steps of the TASTE process. We recall the main steps:

 Interface View: The Interface View (IV) defines the

logical functions and their interactions within the

system. On the Interface View, functions are

defined and their interfaces are specified. TASTE is

then capable of generating the application code

skeletons, clearly identifying where user defines the

behaviour of the function. The user can specify the

function behaviour either in a programming

language (Ada, C, C++ and Micropython are

supported), or using a graphical modelling language

(SDL, Simulink, etc.), for which code cam be

generated and integrated automatically. The

Interface View remains unchanged for both TSP and non-TSP applications.

 Deployment View: The Deployment View (DV) shows how the logical functions of the system are

deployed on the target hardware. The Deployment View reuses predefined hardware component

descriptors that are available within an AADL library (HW Library). This library contains configuration

parameters for the operating system (processor) or the communication libraries (endpoints). These

elements are used by the Ocarina code generator and PolyORB-HI middleware to configure the system

on the target platform.

Figure 1 - TASTE Interface View

mailto:lasequeiragouveia@gmv.com
mailto:maxime.perrotin@esa.int
mailto:thanassis.tsiodras@esa.int
mailto:jhugues@andrew.cmu.edu
mailto:daniel.silveira@gmv.com

A set of additional entities and attributes has been

added to the Deployment View to support TSP

architectures. Time partitioning is defined by

additional scheduling attributes within the

Processor, whereas space partitioning requires the

definition of memory segments associated with

each Partition. Additional information such as the

criticality level of each Partition can be also

specified.

 Concurrency View: The Concurrency View is the

result of an automatic model transformation whose

inputs are the Interface and Deployment Views and

the output is a new AADL model including a multi-

threading architecture complying with the Ravenscar Computation Model (RCM). The concurrency view

is used to perform code generation, but also used scheduling analysis providing two scheduling analysis

functions by using Cheddar [6] and MAST [7]. In the Concurrency View, properties can be adjusted to

finely tune SMP usage, such as task allocation to core and priority.

3 Code generation and build system

3.1 PolyORB-HI

PolyORB-HI is the main execution platform used in TASTE. It provides the code that interacts with the

underlying operating system: RTEMS, GNAT, Linux, FreeRTOS, etc. PolyORB-HI was upgraded to support

the latest version of RTEMS that is compatible with multicore platforms and the AIR hypervisor. In particular,

PolyORB-HI can now interface its own communication mechanisms (queues, semaphores) with the inter-

partition ports provided by AIR.

3.2 Kazoo

Kazoo is the build system of TASTE. It is in charge of computing the set of runtime resources that are needed

to deploy the system on target according to the requirements from the Interface and Deployment Views. Kazoo

generates the Concurrency View, together with code that ensures the system orchestration together with

PolyORB-HI. In the scope of this work, Kazoo was extended to enable the deployment of threads on TSP

partitions. This was made possible by the flexible design of Kazoo, which allows creating new code generators

via a powerful templating engine.

4 Results and way forward

The main result of the study is an augmented MBSE toolchain that allows to specify and design multi-partition

communicating systems. It benefits from a mature MBSE process that abstracts away a lot of complexity and

facilitates the prototyping and deployment of TSP systems. The work is not over yet: support of I/O partitions

will shortly allow to have isolated hardware-software interactions ; scheduling analysis of TSP systems based

on the models ; finer-grain specification of the processor core usage in combination with multi-partitions ;

integration with system-level models (via OSRA), etc. MBSE allows for moving step by step from a manual,

error-prone development lifecycle to a much more solid and consistent process supported by tools.

Figure 2 - TASTE Deployment View with partition timing slots

definition

References

1. TASTE (The ASSERT Set of Tools for Engineering) Website: http://taste.tools

2. AIR Website: http://www.gmv.com/en/Products/air/
3. ESA Contract No. 4000121551/17/NL/FE for ITT AO/1-8834/17/NL/FE – Multicore implementation of the On-Board

Software Reference Architecture with IMA capability:

4. Andersson, J., Hjorth, M., Habinc, S., Gaisler J.: Development of a functional prototype of the quad core NGMP space

processor. In Proceedings of Aerospace Conference DASIA (2019).

5. RTEMS real time operating system (RTOS), 2020. https://www.rtems.org/
6. F. Singhoff, J. Legrand, L. Nana, L. Marcé. “Cheddar: a Flexible Real-Time Scheduling Framework”, ACM SIGAda Ada

Letters, 24(4):1-8, ACM Press. 2004

7. M. Gonzalez Harbour; J.J. Gutierrez Garcia; J.C. Palencia Gutierrez; J.M. Drake Moyano. MAST: Modeling and analysis

suite for real time applications, Proceedings 13th Euromicro Conference on Real-Time Systems, IEEE, 13-15 June 2001.

http://taste.tools/
http://www.gmv.com/en/Products/air/
https://www.rtems.org/

