
CoCoSim: an automated analysis framework
for Simulink/Stateflow ∗

Applying V&V techniques for safety requirement on Simulink/Stateflow models.

Hamza Bourbouh†‡ Guillaume Brat‡ Pierre-Loïc Garoche§

Abstract
Performing verification and validation (V&V) early
in the development cycle of critical systems can help
reduce the cost and time of detecting and fixing er-
rors. Thus, performing V&V at the design level
helps eliminate potential problems before the soft-
ware is fully implemented. Our objective is to en-
able the verification of Simulink (a graphical data-
flow modeling language widely used in the design of
flight control systems) models with respect to for-
mal properties that represent system requirements.
In this paper, we present the CoCoSim toolbox: an
open source framework for specifying and verifying
user-defined requirements on Simulink models. The
open architecture of the tool enables the integration
of multiple analyses (ours and promising ones in the
research community for instance) in a bid to truly
enable the application of formal verification meth-
ods to Simulink/Stateflow models.
We believe that model-based system engineering

combined with tools supporting both code develop-
ment and V&V activities could make a huge impact
on the fast development of space systems. In addi-
tion, the open-source feature of the framework eases
the integration of state of the art tools and methods
from academia, enabling their uses by the industry
practionner.

1 Introduction
1.1 Context
Safety-critical systems design requires a thorough
development process including formal verification
and correct by construction behaviour. In that
area, Model-Based Design has been widely used
for software development. Such an approach of-
fers the refinement of a system from High Level Re-

∗The work was partially supported by projects ANR-
17-CE25-0018 and NASA Contracts No. NNX14AI09G and
NNA14AA60C.
†KBR Inc.
‡NASA Ames Research Center
§ENAC, Université de Toulouse, France

quirements down to the embedded code while hav-
ing an executable model at different stages. Mat-
lab/Simulink1 from MathWorks, is a de facto
model-based design standard in industry, offering
verification and code generation means.
Nonetheless, other development frameworks are

used in addition in some industries, such as aero-
nautic, railways or space. Indeed, control/com-
mand applications have received a particular atten-
tion over the years and several synchronous pro-
gramming languages such as Esterel [1], Lustre
[7] or Signal [15] have been defined to help their de-
sign. Scade [9] is an industrial and DO 178C qual-
ified Lustre-based framework that provides strong
guarantees and proofs well appreciated, in particu-
lar for certification.
Offering frameworks linking Simulink and syn-

chronous approaches is thus appealing. CoCoSim
belongs to this category as it is an open source tool
that translates Simulink specification in Lustre
while preserving semantics and providing many as-
sociated traceability or test capabilities.
This paper gives a brief overview of the Co-

CoSim architecture and its current capabilities.
While Simulink models are more general and could
manipulate both continuous time and discrete time
systems, their semantics is not as formally defined
as it is for a language such as Lustre. In our
work we restrict Lustre to the discrete-time sub-
set of Simulink constructs, which is a reasonable
assumption when considering models that will be
auto-coded into embedded devices.

2 Overview of CoCoSim
CoCoSim is a highly automated frame-
work for verification and code generation of
Simulink/Stateflow models. It consists of
an open architecture, allowing the integration of
different analyses. CoCoSim is structured as a
compiler, sequencing a series of translation steps
leading, eventually to either the production of

1https://www.mathworks.com/products/simulink.html

1



source code, or to the call to a verification tool.
By design, each phase is highly parametrizable
through an API and could then be used for different
purposes depending on the customization. The
Figure 1 outlines the different steps.

Figure 1: CoCoSim framework

2.1 Formal semantic

CoCoSim provides a formal semantic of a well
defined subset of Simulink/Stateflow blocks.
This formal representation will permit the use of
formal verification methods and code generation.

CoCoSim starts first by simplifying some com-
plex blocks into a set of basic blocks. Then an
internal representation of the model is generated
containing all information needed for code genera-
tion. Based on the work of Caspi et al. [6], Gene-
Auto [13, 16] and P [3] projects, CoCoSim trans-
lates modularly the pre-processed mono-periodic
Simulink model into an equivalent Lustre model.
The generated Lustre model has the same hierar-
chy as the original Simulink model and preserves
the initial semantic.

CoCoSim is customizable and configurable.
Indeed, it supports most of frequently used
Simulink blocks libraries (around 100 blocks) and
new blocks can be easily supported.

2.2 Supported analyses

Once a formal representation of Simulink model is
generated, CoCoSim is connected to a set of ex-
ternal tools to provide code generation, formal ver-
ification or test case generation. The toolchain is
highly automated as all the steps of verification
or code generation are automated.
The external tools are introduced and linked to

the platform in a very generic way. While Co-
CoSim is built mainly around a specified set of
tools, additional ones can be easily locally linked
or even distributed as extensions.
All CoCoSim analyses are performed on the

compiled artifact and the results are expressed back
at Simulink level thanks to traceability informa-
tion. We sketch here the features of the connected

tools. At the current moment all tools are open-
source and freely available. It scales well with
large models, therefore various verification tech-
niques and compositional reasoning can be used.

Formal Verification: SMT-based model check-
ing Once requirements have been expressed using
CoCoSim library and attached to the Simulink
model, different tools can perform SMT-based
model checking and check their validity. In case
the property supplied is falsified, CoCoSim pro-
vides means to simulate the counterexample trace in
the Simulink environment. Currently, CoCoSim
is connected to Kind2 [8] a powerful tool that imple-
ment multiple algorithms including k-induction [14]
and IC3/PDR [4] as well as on-the-fly invariant gen-
eration. All of these can be performed with various
SMT solvers: CVC4, Z3, Yices.

Code generation: Some of CoCoSim backends
provide code generation. Eg. LustreC [12] is an im-
plementation of the modular compilation scheme [2]
used in Scade. It preserves the hierarchy of the
initial model, easing the checking of traceability be-
tween Lustre and generated C code.

Test cases generation: CoCoSim generates test
cases based on two different methods. In the first
method a coverage criteria such as MC-DC is used.
The second approach relies on the notion of mu-
tants. A good test suite distinguishes valid program
from mutants.

3 Experiments
Since we started this effort of applying Lustre-level
analyses to Simulink models, we have had the op-
portunity to evaluate the approach and the ap-
plicability of CoCoSim on reasonably large ex-
amples. Among them the NASA Transport Class
Model (TCM) [5], the model describing the at-
titude and orbital control system (AOCS) of the
Space Shuttle, the nominal mode of the AOCS
of a French scientific satellite (DEMETER) or on
other industry-provided examples such as publicly
available2 Lockheed Martin Cyber Physical Sys-
tems (LMCPS) challenges [10, 11] which is a set of
aerospace-inspired examples provided as text doc-
uments specifying the requirements along with as-
sociated Simulink models. Examples range from a
basic integrator to complex autopilots. The com-
plete case study and analysis results are presented
in our technical report.3

2https://github.com/hbourbouh/lm_challenges
3https://drive.google.com/drive/u/1/folders/

1GsKiu_O9_0SK_5XcLZZefi6g9MDAe0CC

2

https://drive.google.com/drive/u/1/folders/1GsKiu_O9_0SK_5XcLZZefi6g9MDAe0CC
https://drive.google.com/drive/u/1/folders/1GsKiu_O9_0SK_5XcLZZefi6g9MDAe0CC


References
[1] Gérard Berry and Georges Gonthier. “The Es-

terel synchronous programming language: design,
semantics, implementation”. In: Science of Com-
puter Programming 19.2 (1992), pp. 87–152. issn:
0167-6423.

[2] Dariusz Biernacki, Jean-Louis Colaço, Grégoire
Hamon, and Marc Pouzet. “Clock-directed modu-
lar code generation for synchronous data-flow lan-
guages”. In: LCTES’08. 2008.

[3] Matteo Bordin, Tonu Naks, Marc Pantel, and
Andres Toom. “Compiling heterogeneous models:
motivations and challenges”. In: Proceedings of the
6th International Congress Embedded Real Time
Software (ERTS’12). 2012.

[4] Aaron R. Bradley. “IC3 and beyond: Incremental,
Inductive Verification”. In: CAV’12. 2012.

[5] Guillaume Brat, David H. Bushnell, Misty
Davies, Dimitra Giannakopoulou, Falk Howar,
and Temesghen Kahsai. “Verifying the Safety of
a Flight-Critical System”. In: FM 2015: Formal
Methods - 20th International Symposium, Oslo,
Norway, June 24-26, 2015, Proceedings. 2015,
pp. 308–324.

[6] Paul Caspi, Adrian Curic, Aude Maignan, Chris-
tos Sofronis, and Stavros Tripakis. “Translat-
ing Discrete-Time Simulink to Lustre”. In: Third
International Conference on Embedded Software
EMSOFT. 2003, pp. 84–99.

[7] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs,
and John Plaice. “Lustre: A Declarative Lan-
guage for Programming Synchronous Systems”.
In: POPL’87. 1987, pp. 178–188.

[8] Adrien Champion, Alain Mebsout, Christoph
Sticksel, and Cesare Tinelli. “The Kind 2 Model
Checker”. In: Computer Aided Verification - 28th
International Conference, CAV 2016, Toronto,
ON, Canada, July 17-23, 2016, Proceedings, Part
II. 2016, pp. 510–517.

[9] Jean-Louis Colaço, Bruno Pagano, and Marc
Pouzet. “SCADE 6: A formal language for em-
bedded critical software development (invited pa-
per)”. In: 11th International Symposium on The-
oretical Aspects of Software Engineering, TASE
2017, Sophia Antipolis, France, September 13-15,
2017. 2017, pp. 1–11.

[10] Chris Elliott. “An Example Set of Cyber-Physical
V&V Challenges for S5, Lockheed Martin Skunk
Works”. In: Safe & Secure Systems and Software
Symposium (S5), 12-14 July 2016, Dayton, Ohio.
Ed. by Air Force Research Laboratory. 2016.

[11] Chris Elliott. “On Example Models and Chal-
lenges Ahead for the Evaluation of Complex
Cyber-Physical Systems with State of the Art
Formal Methods V&V, Lockheed Martin Skunk
Works”. In: Safe & Secure Systems and Software
Symposium (S5), 9-11 July 2015, Dayton, Ohio.
Ed. by Air Force Research Laboratory. 2015.

[12] Pierre-Loïc Garoche, Temesghen Kahsai, and
Xavier Thirioux. LustreC. https://github.com/
coco-team/lustrec.

[13] Ana-Elena Rugina, David Thomas, Xavier Olive,
and G. Veran. “Gene-Auto: Automatic Software
Code Generation for Real-Time Embedded Sys-
tems”. In: Proceedings of DASIA 2008 Data Sys-
tems In Aerospace. 2008.

[14] Mary Sheeran, Satnam Singh, and Gunnar Stål-
marck. “Checking Safety Properties Using Induc-
tion and a SAT-Solver”. In: FMCAD’00. 2000,
pp. 127–144. isbn: 978-3-540-40922-9.

[15] “Synchronous programming with events and re-
lations: the SIGNAL language and its seman-
tics”. In: Science of Computer Programming 16.2
(1991), pp. 103–149. issn: 0167-6423.

[16] Andres Toom, Tonu Naks, Marc Pantel, M Gan-
driau, and Indrawati. “Gene-Auto: an Automatic
Code Generator for a safe subset of Simulink/S-
tateflow and Scicos”. In: Proceedings of the 4th
International Congress Embedded Real Time Soft-
ware (ERTS’08). 2008.

3

https://github.com/coco-team/lustrec
https://github.com/coco-team/lustrec

	Introduction
	Context

	Overview of CoCoSim
	Formal semantic
	Supported analyses

	Experiments

