
CocoSim: an integration hub for compilation and formal
verification of Simulink/Stateflow

H. Bourbouh, G. Brat, P.-L. Garoche

ESA MBSE Workshop | September 28th-29th 2020 | Virtual

CONTEXT: CRITICAL EMBEDDED CONTROLLERS

Core elements of runtime systems
Designed with dataflow models
∗ validation through simulation/test
∗ code generation

Infinite behavior: endless loop

Designed by local composition:
a linear controller
combined with safety constructs

Most properties are analyzed locally.

Requirements→ Verification

u
Controller

in0_d in1_d
Triplex

in0

Triplex
in1

System

in0

in1

Satin0a

Satin0b

Satin0c

Satin1a

Satin1b

Satin1c

MODELS AND SEMANTICS – WHICH MODELS TO DESIGN,
COMPILE AND VERIFY CRITICAL CONTROL SYSTEMS?
Different models for differents uses:

mode changes, discrete transitions: state machines, automata
time-sampled systems, eg. controllers, discrete dynamical
systems: synchronous data flow languages (n-synchronous if need
for complex or distributed systems)

VISION: INTEGRATE FORMAL METHODS IN THE DEV. CYCLE
KEY ELEMENTS – OUR PHILOSOPHY : CODE GENERATION – SEMANTICS LAYER

Model is the source – Its semantics shall be preserved and lead to
final code
Requirements are formal and drive the analyses

Simulink

Lustre

C code

LUSTRE-C

CocoSim 
Zustre/PKind/Riny/SMT-AI
Invariant generation
Test generation


High level properties
(stability/robustness)
Synchronous observers
Counter-example traces

{
WP
E-ACSL

COCOSIM ARCHITECTURE

CoCoSim Architecture
Simulink model

 20

COCOSIM 2 – AN OPEN SYSTEM

Pre-Processing

Transform a Simulink model with ‘fancy’ blocks to one that uses basic Simulink block

 22

FRONTEND: PREPROCESSING

Simulink to Lustre Compiler

- Translate discrete-time non-ambiguous part of Simulink (the controller).

- Goal: preserve semantics of Simulink.

 25

MIDDLE-END: COMPILATION TO LUSTRE

Lustre

Property Checking Code Generation Test-case
Generation

C RUST
Kind2

JKind

Zustre MC-DC

White-box
testing

 30

Mutation
based

BACKENDS

 4

The Simulink guidance and controls system for the TCM
SIMULINK GUIDANCE AND CONTROLS SYSTEM FOR THE TCM

Assume-Guarantees
• assume BL >= 0.0;
• assume TL > BL ;
• guarantee TL >= YOUT and YOUT >= BL;

 43

REQUIREMENTS AS SYNCHRONOUS OBSERVERS 1/2
AS A BOOLEAN PREDICATE

Requirement Specification

 42

(BL < TL) => (BL <= YOUT <= TL)

REQUIREMENTS AS SYNCHRONOUS OBSERVERS 2/2
ASSUME-GUARANTEE CONTRACTS

FEATURES / AVAILABLE TOOLS

Code generation
∗ ADA, C, Rust

Model-checking
∗ Zustre (LustreC + Z3/Spacer): PDR
∗ Kind2: PDR + k-induction

Test generation
∗ enumerating coverage condition and searching for models

Requirements elicitation with FRET
Static Analysis (not integrated yet)
∗ computation of non linear invariants

I ellipsoids, semi-algebraic sets
∗ templates / support functions / policy iterations

Semantic preservation – Proof revalidation at code level (ongoing)
Numerical accuracy (ongoing)
∗ Floating point analyses (zonotopes)
∗ Floating point optimization

Simulation / Hybrid system analyses (ongoing)

CONCLUSION

Simulink is used and widespread
→ a good target to support MBSE VV
Model semantics shall be precise enough to be executable
CocoSim provides
∗ expression of requirements as model components
∗ test generation
∗ State-of-the-art formal methods

Future work: extensions to hybrid systems

https://github.com/NASA-SW-VnV/CoCoSim

Thank you! Questions ?

CONCLUSION

Simulink is used and widespread
→ a good target to support MBSE VV
Model semantics shall be precise enough to be executable
CocoSim provides
∗ expression of requirements as model components
∗ test generation
∗ State-of-the-art formal methods

Future work: extensions to hybrid systems

https://github.com/NASA-SW-VnV/CoCoSim

Thank you! Questions ?

