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• Despite low densities compared to the thermal
(E < 10 keV) plasma, energetic (10 keV < E < 100 
MeV) particles strongly alter Ganymede’s 
inhomogeneous surface (1, 2, 3, 4, 5)

• These energetic ions and electrons also contribute 
to surface sputtering (6, 7, 8) and ice state (9)

• Local Jovian magnetospheric thermal (E < 10 keV) 
plasma properties change over a synodic rotation, 
and the resulting interaction with Ganymede and 
its dipole varies in time (Fig. 1)

• Energetic ions precipitate non-uniformly across the 
moon’s surface and are strongly affected by local 
electromagnetic field perturbations and 
Ganymede’s permanent dipole (5, 8)

• But despite their contribution to surface chemistry, 
energetic electron precipitation patterns and 
fluxes onto Ganymede remain unconstrained

• This study: Investigate how electron surface fluxes 
are affected by the non-uniform electromagnetic 
environment and vary over a synodic rotation, and 
constrain fluxes averaged over large timescales

Figure 2:  Ambient electron environment near Ganymede (Liuzzo+ 2020).
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Figure 1:  Plasma interaction variability and field line draping near Ganymede (Liuzzo+ 2020).

G1: Above Jovian current sheet center G8: Within Jovian current sheet G28: Below Jovian current sheet center
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• Use existing hybrid model (treating ions as particles, electrons as fluid) 
results from Fatemi+ 2016 to obtain electromagnetic fields near 
Ganymede for three Galileo encounters (Fig. 1):

• G8: Ganymede embedded within Jupiter’s magnetospheric current sheet

• G1: Ganymede located at maximum distance above the current sheet 

• G28: Ganymede located at maximum distance below the current sheet

• Apply the GENTOo test-particle model (Liuzzo+ 2019a; 2019b) to 
propagate energetic electrons through these fields:

• Electrons are initialized on Ganymede’s surface and traced backward in time

• Those electrons that intersect the surface at any point during tracing are “forbidden” 
and, in a forward-tracing picture, would not contribute to the surface electron flux

• Those that do not intersect the surface are “allowed” and contribute to surface flux

• Energetic electrons near Ganymede complete a half-bounce period 
(from the moon’s orbital plane, to their mirror point at large Jovian 
magnetic latitudes, and back) in ~30s. 

• This motion must be considered to determine if an electron is forbidden or allowed

• The particle must travel to large enough azimuthal distances to ensure it does not 
interest the surface on a subsequent bounce to become forbidden

• Above the critical energy (Ec ≅ 2 MeV) an electron’s drift velocity 
cancels Ganymede’s orbital velocity and electrons anti-corotate (Fig. 3)

• Using the local ambient electron distribution (Fig. 2), apply Liouville’s 
theorem to determine surface fluxes for allowed particles only.
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Figure 3:  Azimuthal displacement of energetic electrons (with 

respect to Ganymede) after a half-bounce period initially traveling 

(a) northward or (b) southward). Note the “critical energy” (Ec) at 

which electrons return with zero displacement (Liuzzo+ 2020).

(a)

(b)
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Results: G8
• Electron precipitation

with Ganymede embedded within Jupiter’s 
magnetospheric current sheet (Fig. 4)

• Fluxes are strongly partitioned by latitude

• Two “bands” of enhanced flux form at high 
latitudes in the trailing hemisphere (Fig. 5)

• Low latitudes are shielded by
Ganymede’s dipole from any
precipitating flux at energies E < 40 MeV

• Ganymede’s dipole is unable to shield high-
energy (E > 40 MeV) electrons accessing the 
equator; the resulting fluxes are asymmetric

Important takeaway points:

• The polar electron flux exceeds the net ion 
flux by an order of magnitude (cf. 1, 8)

• The equatorial electron flux is not zero

• The entire surface is likely irradiated by 
these electrons beyond depths of 10 cm
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Figure 5:  

Explaining the high-

latitude “bands” of 

enhanced flux 

(Liuzzo+ 2020).

• (a) Backtraced electrons far below the 
critical energy Ec are located upstream 
after mirroring and are “allowed”

• (b) Just below Ec, some electrons 
impact the moon after mirroring

• (c) At E ⪅ Ec, only electrons near the 
trailing apex are allowed

• (d) Above Ec, the first allowed locations 
are near the leading apex

• At other moons, a “bullseye” forms; 
Ganymede’s dipole prevents this 
low-latitude feature from forming
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Figure 4:  Energetic electron number flux onto

Ganymede during the Galileo G8 encounter (Liuzzo+ 2020).
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Results: G1 & G28

Figure 6:  Energetic electron number fluxes onto Ganymede during 

the Galileo (left) G1 and (right) G28 encounters (Liuzzo+ 2020).
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• Electron precipitation with Ganymede located (Fig. 6 left; G1) far above 
the center of Jupiter’s magnetospheric current sheet and (Fig. 6 right; 
G28) far below the center of the current sheet

• Near trailing apex, electrons of all energies are unable to precipitate:
Ganymede’s mini-magnetosphere is more expanded due to a weaker 
upstream pressure, and electrons are shielded from precipitating

Important takeaway points:

• While the G1/G28 precipitating fluxes are similar to during G8 (near 
the current sheet center), the trailing apex is now completely shielded

Results: Averaged fluxes

Figure 7:  Time-averaged energetic electron 

number flux onto Ganymede (Liuzzo+ 2020).

Important takeaway points:

• Promising agreement with observed 
asymmetries of the surface ices (4, 5)

• Energetic electrons irradiate 
everywhere: neither Ganymede’s 
dipole nor plasma interaction can 
completely shield the surface
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• The distribution of precipitating energetic electrons onto Ganymede’s surface
displays a strong inhomogeneity:

• High-latitude fluxes exceed equatorial fluxes by 5 orders of magnitude

• The polar fluxes maximize in the orbital trailing hemisphere due to the bounce motion of electrons

• The equator is not shielded from precipitating energetic electrons; fluxes are asymmetric in longitude

• Fluxes averaged over a synodic rotation agree well with surface brightness patterns

• Compared to energetic ions, electrons dominate the number and energy flux into 
polar latitudes, thus likely contributing to amorphization of the low-temperature ice

• Open questions include, e.g., the influence of the perturbed plasma environment on 
the stability of electron trajectories quasi-trapped in Ganymede’s local field (10, Fig. 8)
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Discussion

Figure 8:  Trajectory of an electron quasi-trapped in 

Ganymede’s magnetic environment. The timescales 

over which such “electronic” radiation belts remain 

stable are unknown (Liuzzo+ 2020).

But wait, there’s more!
Our study has even more findings that we couldn’t fit into this presentation, including:

• dynamical electron trajectories highlighting local asymmetries in Ganymede’s electromagnetic environment…

• quantified effect of Ganymede’s interaction with the Jovian plasma on the precipitating electron fluxes… 

• surface energy fluxes…

and other exciting physical processes!

For complete details, click here to check out our manuscript recently published
in JGR Space Physics (Liuzzo+ 2020)
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