Variability in the energetic electron bombardment of Ganymede

Lucas Liuzzo^{1*},

Andrew R. Poppe¹, Christopher Paranicas², Quentin Nénon¹, Shahab Fatemi^{3,4}, and Sven Simon⁵

¹Space Sciences Laboratory, University of California, Berkeley ²The Johns Hopkins University Applied Physics Laboratory ³Swedish Institute of Space Physics

⁴Department of Physics, Umeå University

⁵School of Earth and Atmospheric Sciences, Georgia Institute of Technology

*Corresponding author: L. Liuzzo (<u>liuzzo@berkeley.edu</u>)

Manuscript recently published in JGR Space Physics (doi:10.1029/2020JA028347)

This study:

- Investigates how energetic electron surface fluxes and precipitation patterns are affected by Ganymede's non-uniform electromagnetic environment (intrinsic dipole and plasma interaction)
- Studies how the fluxes vary as a function of distance to the center of Jupiter's magnetospheric current sheet
- Constrains electron fluxes averaged over large timescales
- uses existing hybrid model results (<u>Fatemi+ 2016</u>) to represent electromagnetic fields near Ganymede
- Applies the GENTOo test-particle model (Liuzzo+ 2019a; 2019b) to propagate energetic electrons through these fields

