
JUICE spacecraft charging: Implications for future particle and fields measurements

Mika Holmberg¹, Fabrice Cipriani¹, Grégoire Déprez¹, Christian Imhof², Aljona Blöcker³, Olivier Witasse¹, Nicolas Altobelli⁴, Hans Huybrighs¹, and Jan-Erik Wahlund⁵

- Spacecraft Plasma Interaction Software (SPIS) simulations show minor surface charging of JUICE in typical plasma sheet environments.
- However, environments that might cause larger measurement perturbations include:
 - High density plasma occasionally detected at 9.5 R₁
 - The plumes of Europa
 - The aurora of Ganymede
- Which surface potentials will the above environment generate? How will this affect the future particle and fields measurements of JUICE?

Simulated surface potentials of JUICE at 9.5 R₁ using $n_e = 760 \text{ cm}^{-3}$

mika.holmberg@esa.int Slide 1

¹ ESTEC, European Space Agency, Noordwijk, Netherlands

² Airbus Defence and Space GmbH, Freidrichshafen, Germany

³ KTH Royal Institute of Technology, Stockholm, Sweden

⁴ ESAC, European Space Agency, Villanueva de la Canada, Spain

⁵ Swedish Institute of Space Physics, IRF, Uppsala, Sweden