Connecting the **Galileo** particle, plasma, & field **data with** ionospheric, atmospheric, & field **models**

Marina Galand¹, **Gianluca Carnielli**¹, François Leblanc², Ronan Modolo², Xianzhe Jia³, & Arnaud Beth¹

¹ Dpt of Physics, Imperial College London, London, UK (<u>m.galand@ic.ac.uk</u>)
 ² LATMOS/IPSL, Sorbonne Université/Université Paris-Saclay, Paris, France
 ³ Dpt Climate & Space Sciences and Engineering, Université of Michigan, Ann Arbor, USA

Motivation

• Essential to have a good understanding of Ganymede's plasma environment:

- Ionosphere: Critical layer for coupling with magnetized environment
 (→ magnetospheric models often assume spherically symmetric ionosphere)
- In preparation to JUICE (\rightarrow operability of some plasma instruments)
- Ionosphere of Ganymede poorly constrained
 - Previous ionospheric models: transport neglected, chemical scheme unrealistic, only photoionization considered (e.g., Cessateur et al. 2012)
- \rightarrow Need for more realistic ionospheric models

Outline

- 3D kinetic model of Ganymede's ionosphere
 - To calculate ion trajectories
 - To derive 3D maps of 1st moments for main ion species

Galileo/Model comparison (G2 flyby)

- To validate the B and E fields
- To constrain the exospheric densities

3D kinetic model of Ganymede's ionosphere

Imperial College
London3D kinetic model of Ganymede's ionosphere

- Inputs:
 - Exospheric densities:
 - O_2 , H_2O , H_2 , (O, H, OH) (Leblanc et al., 2017)
 - Ionisation frequencies:
 - From solar EUV radiation
 - From Jovian electrons
- Creation of ionospheric ions

Imperial College
London3D kinetic model of Ganymede's ionosphere

- Inputs:
 - Electric & magnetic fields
 - MHD: Jia et al. (2009)
 - Hybrid: Leclercq et al. (2016)
 - Ions "pushed" through the fields
- Collisions: charge exchange included
- First 3D kinetic test-particle model of the ionospheric ions

Outputs:

O₂⁺ dominant in Ganymede's ionosphere

3D kinetic model of Ganymede's ionosphere

b) h) <E>

YZ plane

Carnielli et al. (2019)

Galileo/Model comparison: G2 flyby

G2 flyby

Imperial College College

Comparison: Magnetic field

 Very good agreement between Galileo/model in terms of <u>B</u> field along Galileo trajectory

Galileo/MAG: Kivelson et al. (1996,1997) MHD: Jia et al. (2009) Hybrid: Leclercq et al. (2016)

Comparison: lon energy distribution

Galileo/PLS (Frank et al. 1992): Data processing based on work by Markus Fraenz (see Carnielli et al. 2019)

Ion model driven by fields from MHD (Jia et al. 2009)

Imperial College London Comparison: Ion bulk velocity

Validation of E & B fields

- ✓ Agreement in terms of:
 - B field along the trajectory
 - Ion energy distribution & ion bulk velocity (both influenced by field in 3D environment)
- Validation of the MHD modelled fields* assumed in the near environment of Ganymede (* Jia et al. 2009)
- Disagreement between obs and modelled ion energy magnitude (production?)

Comparison: Plasma density

- Galileo/PWS (Eviatar et al., 2001)
- 3D ion kinetic model:
- Ionospheric plasma using MHD B field (Jia et al. 2009)
- Ionospheric plasma using hybrid B field (Leclercq et al. 2016)
- Jovian magnetospheric plasma using MHD **B** field (Jia et al. 2009)

Agreement in terms of shape (MHD)

Carnielli et al. (2020a)

Disagreement in terms of magnitude

Imperial College Effect of collisions 264 km! CA

London

> No significant effect of collisions on ionospheric densities at location of Galileo

Boosted exospheric O₂

Still discrepancy inbound: Unlikely explained by asymmetry in exosphere

- Good agreement outbound
- Still discrepancy inbound (factor ~ 4)

10 x [O₂] everywhere

CA]

4 x electron-impact ionization in open B region around sub-solar longitude (inbound) [Galileo/EPD asymmetry around

- Good agreement overall in both plasma density and ion spectrog.
- Near CA: modelled ne too low by factor ~ 2 – 3

Carnielli et al. (2020a)

Conclusion

- First 3D kinetic ion model of Ganymede:
 - ✓ 3D maps (n, <u>u</u>, <E>) for ionospheric species derived:
 - Kinetic approach required, spatially structured distributions, O₂⁺ dominates
 - > Surface sputtering by ionospheric plasma dominates at low lat on leading hemisph.
 - ✓ Model also applied to Jovian magnetospheric ions & hot O₂
- Comparison with Galileo multi-instrument dataset (G2 flyby):
 - ✓ Validation of the field environment (B field, ion bulk velocity & ion energy distribution)
 - ✓ [O₂] seems underestimated by factor 10 (ion energy spectrog. & plasma density)
- Learn more?

Imperial College

London

- Carnielli et al. (Icarus, 2019, https://doi.org/10.1016/j.icarus.2019.04.016)
- Carnielli et al. (*Icarus*, 2020a, <u>https://doi.org/10.1016/j.icarus.2020.113691</u>)
- Carnielli et al. (*Icarus*, 2020b, <u>https://doi.org/10.1016/j.icarus.2020.113918</u>)

Perspective

- Improve the estimation of the energetic electron population
 - Improve ionospheric estimations
 - Comparison with auroral emissions (e.g., Molyneux et al. 2018)
- Coupling with magnetospheric models: Asymmetric ionosphere, multi-species
- Apply to other Galileo flybys (e.g., within jovian PS)
- Relevance to **JUICE**:
 - RPWI/MIME, 3GM, [NIM], PEP
 - J-MAG
 - UVS
- Relevance of a multi-instrument approach

