Interaction of plasma with the surface of icy moons:
Insights from laboratory experiments
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> Irradiation by energetic ions, electrons, and UV photons
induces sputtering and chemical processes (radiolysis) in the
surfaces of icy moons and comets. We currently study
electron irradiation of porous water ice samples in laboratory
as preparation for ESA’s Jupiter’s Icy Moons Explorer.

> Previous studies have shown that most electron-induced H,O

radiolysis products leave the ice as H, and O, and that O, can be
trapped under some favourable conditions in ice samples (see
references on last slide).

> Questions for our new experiments:
What is the timescale for formation and release of electron-
Induced radiolysis products in water ice? Can build-up of O, be
reproduced in laboratory ice samples, as suggested by
observations of the surfaces of Jupiter's icy moons
(Spencer&Calvin 2002) and comet 67P-Churyumov-Gerasimenko
(Bieler et al. 2015)? How abundant are rare radiolysis species
such as H,0, or H,0?
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Irradiation of icy surfaces in real life
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In laboratory: 4 different types of water ice samples, u
consisting of de-ionized water
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Amorphous ice film on Regolith ice,‘
microbalance (~1.0 g/cm?®) (5 um grains, 0.23 g/cm?)

Regolith ice,

Slab of ice (~1.0 g/cm?) (50 um, 0.5 g/em?)

ESA workshop Galli et al.



Laboratory setup for ice irradiation experiments
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Laboratory setup: Analysis tools

We have built a new time-of-
flight mass spectrometer for
ice experiments in house:
faster, more sensitive,

and higher mass resolution
than old QMS.

— Commissioned in 2019.

- First measurements with
ice sample in November 2019
(see next page).

For some experiments we also
monitored the ice sample with

a hyperspectral camera, covering
400 nm — 2500 nm.
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Results with new TOF mass spectrometer: u
Net increase of species upon 1 keV electron irradiation —
of water ice sample (fine-grained ice at 96 K)
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Results with new TOF mass spectrometer: u

Net increase of species upon intense 5 keV electron —

irradiation
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Results with new TOF mass spectrometer:
Average irradiation-induced signal in gas phase once
saturation (~10*° el./cm?) is reached

Species
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Results with new TOF mass spectrometer:
Temporal evolution and saturation effects
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Results with new TOF mass spectrometer: u
Temporal evolution and saturation effects T
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Results with new TOF mass spectrometer: u

The O2/H20 ratio retained in the ice
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> We have evidence that O, formed from radiolysis is
retained in irradiated ice to a certain threshold.

> Assuming d=46 nm for 1 keV electrons from theory,
calculate the O,/H,O ratio in the irradiated layer from excess
of released H, to O, within the first 20 seconds
(for O,, A =0.03 £ 0.02 s1):

Y")- m
F(O2/H20) = ~92L o _Tmol 0,015

e"A  AdpN,

> Range of uncertainty 0.9%...4.5% because of A.

> This is comparable to the Ganymede surface (r = 0.1...1%,
Calvin et al. 1996) and to gas abundances of comet 67P/C-G
(r = 3.8£0.85%, Bieler et al. 2015)

> Reuvisit the sputtering yield Y, needed for this estimate
(Meier and Loeffler 2020, Galli et al. 2018, Teolis et al. 2017)
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Spectral reflectance of fine-grained ice: Realistic u
for icy moons, but irradiation effects not notable he
Fine-grained ice, before and after irradiation
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Preliminary results

>

New TOF mass spectrometer commissioned. We
can analyse released species from irradiated ice
films and deep porous ice samples.

H,O - H,+ % O, upon e irradiation to first order
correct for any water ice target. But:

H, cannot be retained in ice, O, release shows clear
saturation effect; derived O,/H,O ratio retained In

Irradiated ice ~ few % (comparable to surfaces of
Ganymede, Europa, and Callisto)

Minor radiolysis species: Upper limits for H,O and
H,O, are < 0.5% (compared to the H, released
from the ice sample)

Analysis to be finished
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