Interaction of plasma with the surface of icy moons: insights from laboratory experiments

Oral presentation, block 6 Authors' contact: andre.galli@space.unibe.ch

André Galli, Romain Cerubini, Martin Rubin, Antoine Pommerol, Audrey Vorburger, Peter Wurz, Niels F.W. Ligterink Apurva Oza, Nicolas Thomas

University of Bern, Space Research and Planetary Sciences & Center for Space and Habitability, Switzerland

Abstract

b UNIVERSITÄT

- Irradiation by energetic ions, electrons, and UV photons induces sputtering and chemical processes (radiolysis) in the surfaces of icy moons and comets. We currently study electron irradiation of porous water ice samples in laboratory as preparation for ESA's Jupiter's Icy Moons Explorer.
- Previous studies have shown that most electron-induced H₂O radiolysis products leave the ice as H₂ and O₂ and that O₂ can be trapped under some favourable conditions in ice samples (see references on last slide).
- Questions for our new experiments: What is the timescale for formation and release of electroninduced radiolysis products in water ice? Can build-up of O₂ be reproduced in laboratory ice samples, as suggested by observations of the surfaces of Jupiter's icy moons (Spencer&Calvin 2002) and comet 67P-Churyumov-Gerasimenko (Bieler et al. 2015)? How abundant are rare radiolysis species such as H₂O₂ or H₃O?

Irradiation of icy surfaces in real life

UNIVERSITÄT BERN

In laboratory: 4 different types of water ice samples, consisting of de-ionized water

Amorphous ice film on microbalance (~1.0 g/cm³)

Regolith ice, (5 µm grains, 0.23 g/cm³)

Slab of ice (~1.0 g/cm³)

Regolith ice, (50 μm, 0.5 g/cm³)

Laboratory setup for ice irradiation experiments

Galli et al.

Laboratory setup: Analysis tools

We have built a new time-offlight mass spectrometer for ice experiments in house: faster, more sensitive, and higher mass resolution than old QMS.

- \rightarrow Commissioned in 2019.
- → First measurements with ice sample in November 2019 (see next page).

For some experiments we also monitored the ice sample with a hyperspectral camera, covering 400 nm – 2500 nm.

ESA workshop

First residual gas spectrum with new TOF mass spectrometer, coarse-grained pure water ice

ESA workshop

Galli et al.

h

UNIVERSITÄT RERN Results with new TOF mass spectrometer: Net increase of species upon 1 keV electron irradiation of water ice sample (fine-grained ice at 96 K)

b UNIVERSITÄT BERN

Results with new TOF mass spectrometer: Net increase of species upon intense 5 keV electron irradiation

UNIVERSITÄT

BERN

Results with new TOF mass spectrometer: Average irradiation-induced signal in gas phase once saturation (~10¹⁶ el./cm²) is reached

^b UNIVERSITÄT BERN

h

Species	Rel. abundance in % w.r.t. H ₂	This is valid f where sublim threshold is I
H ₂	100	
0 ₂	52 ± 10	
CH ₃	13 ± 6	
Н	< 10	
0	< 10	
CH ₂	< 3	
H ₂ O	< 1	
H ₂ O ₂	< 0.5	
O ₃	< 0.5	

This is valid for all cases, where sublimation threshold is NOT exceeded **Results with new TOF mass spectrometer: Temporal evolution and saturation effects**

ESA workshop

Galli et al.

D UNIVERSITÄT BERN

Results with new TOF mass spectrometer: Temporal evolution and saturation effects

ESA workshop

Galli et al.

b UNIVERSITÄT BERN

Results with new TOF mass spectrometer: The O2/H2O ratio retained in the ice

- We have evidence that O₂ formed from radiolysis is retained in irradiated ice to a certain threshold.
- Assuming d=46 nm for 1 keV electrons from theory, calculate the O₂/H₂O ratio in the irradiated layer from excess of released H₂ to O₂ within the first 20 seconds (for O₂, λ = 0.03 ± 0.02 s⁻¹):

$$r(\text{O2/H2O}) = \frac{Y_{\text{O2}}j}{e^-\lambda} \times \frac{m_{\text{mol}}}{Ad\rho N_{\text{A}}} \approx 0.015$$

- > Range of uncertainty 0.9%...4.5% because of λ .
- This is comparable to the Ganymede surface (r = 0.1...1%, Calvin et al. 1996) and to gas abundances of comet 67P/C-G (r = 3.8±0.85%, Bieler et al. 2015)
- Revisit the sputtering yield Y₀₂ needed for this estimate (Meier and Loeffler 2020, Galli et al. 2018, Teolis et al. 2017)

UNIVERSITÄT

Spectral reflectance of fine-grained ice: Realistic for icy moons, but irradiation effects not notable

ESA workshop

Galli et al.

b UNIVERSITÄT BERN

b

Preliminary results

- New TOF mass spectrometer commissioned. We can analyse released species from irradiated ice films and deep porous ice samples.
- > $H_2O \rightarrow H_2 + \frac{1}{2}O_2$ upon e⁻ irradiation to first order correct for any water ice target. But:
- > H₂ cannot be retained in ice, O₂ release shows clear saturation effect; derived O₂/H₂O ratio retained in irradiated ice ~ few % (comparable to surfaces of Ganymede, Europa, and Callisto)
- Minor radiolysis species: Upper limits for H₃O and H₂O₂ are < 0.5% (compared to the H₂ released from the ice sample)
- > Analysis to be finished

UNIVERSITÄT

Acknowledgements

This work has been performed with the support of the Swiss National Science Foundation. We also would like to thank J. Gonseth and A. Etter for their relentless support of the scientific work at the MEFISTO facility.

References

- Abdulgalil 2017, https://doi.org/10.1021/acsearthspacechem.7b00028
- Bieler et al. 2015, https://doi.org/10.1038/nature15707
- Galli et al. 2018, https://di.org/10.1016/j.pss.2017.11.016
- Hand & Carlson 2011, https://doi.org/10.1016/j.icarus.2011.06.031 Henderson&Gudipati 2015, https://doi.org/10.1088/0004-637x/800/1/66
- Laufer et al. 2018, https://doi.org/10.1093/mnras/stx3359
- Meier and Loeffler 2020, https://doi.org/10.1016/j.susc.2019.121509
- Orlando & Sieger 2003, https://doi.org/10.1016/S0039-6028(02)02602-X
- Petrik et al. 2006, https://doi.org/10.1063/1.2345367
- Shi et al. 2009, https://doi.org/10.1103/PhysRevB.79.235422
- Shi et al. 2011, https://doi.org/10.1088/2041-8205/738/1/I3
- Spencer & Calvin 2002, https://doi.org/10.1086/344307
- Teolis et al. 2009, https://doi.org/10.1063/1.3091998
- Teolis et al. 2017, https://doi.org/10.1002/2017JE005285

ESA workshop

Galli et al.