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Automatic control issues and solutions

Classical issues in automatic control

1 identification

2 simulation

3 observation

4 control and performance

for dynamical systems, in presence of
uncertainties, heterogeneities,
constraints...

Proposed solutions

1 reduced-order modeling

2 performance certifications

3 observation and control
could be done separately

4 cascade, feedback and series are
possible
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AI

Opportunities

1 scientific computation

2 big data, sensors are everywhere

3 optimization and efficient
algorithms

4 recording of long time-scale
signals is possible

Proposed solutions

1 large neural networks

2 efficient applications

3 automatic learning and
processing

Already many successes that were not possible 3 years ago.
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An example of great succeess

Matchmaking between AI and sismology

Recent work of Michel Campillo to detect seismic signals
[Seydoux et al., Nature Com.; 2020]:

uses [Agen, Mallat; 2014] wavelet on 1010 samples on a year
for one station

scattering network to compute clusters

Human Intelligence is needed but Artificial Intelligence helps

work in progress in sismology: 800 stations in Alps, on
decades.

Matchmaking of Automatic Control and AI?
In both directions?
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Outline

Automatic Control and AI
AI succeeds to improve control paradigms on various issues:

1 reduced-order modelling and simulation
é two approaches illustrated in fluid mechanics

2 identification and observation
é illustrated on navigation problem

and vice versa:

3 systems theory for AI
é a few references only

Non-exhaustive and only personnal presentation on a fastly
growing subject

Presentation will be updated and all comments are welcome
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1 – Scientific machine learning opportunities

For many physical problems, models are very complex, continuous,
varying over the space domain

Big-data alone in not enough, we need

predictibility

domain knowledge

interpretability

Physical models are

multiscale multiphysics phenomena

infinite-dimensional dynamics, large-scale
models with nonlinearities ...

computationally very expensive Gulf of Mexico
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Computational science approach:

solve complex dynamical systems (as partial differential
equations (PDEs) or nonlinear systems)

ẋ = f (x)
y = h(x)

to get training data

fix the structure:
˙̂x = Ax̂
y = Cx̂

find the best Â, B̂ and Ĉ , by solving a convex problem as

min
A,B,C

sup
trajectories x̂ , data x

‖h(x)− Cx̂‖

How to do that?
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First approach: aerodynamic example

See [K. Willcox et al., Projection-based model reduction:
Formulations for physics-based machine learning; 2019]:

Euler Equation for the inviscid steady flow over an airfoil

project the PDE model, and solve an optimization problem

large Mach number range and different lift coefficient are
considered

for a prediction purpose and reduced-order modelling

See also Charles Poussot-Vassal (ONERA)
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Second approach: Koopman operator

Consider the Koopman operator and flows along the nonlinear
ODE/PDE models.

Koopman operator is a linear operator

on a infinite dimensional system

[A. Mauroy and I. Mezic, Global stability analysis using the
eigenfunctions of the Koopman operator]:
Its spectrum is related to stability properties
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Prediction problem

[M. Korda and I. Mezic, IEEE-TAC, to appear] succeeds to

compute the eigenfunctions Ψ

find the best C , that is:

min
C

sup
trajectories x

‖h(x)− CΨ(x)‖

The prediction of h(x(t)) is given by the output of

˙̂x = Ax̂

x̂0 = h(x0)

y = Cx̂

Efficient algorithm
and proof of the approximation of any output by such
eigenfunctions.

Learning from data, and algorithm exploiting complex models
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Real example on fluid dynamics

Estimation and simulation using real data in Gulf of Mexico after
the Deepwater Horizon disaster

[I. Mezic, et al. A new mixing diagnostic
and gulf oil spill movement. Science; 2010.]

Gulf of Mexico

The controlled case could be considered as well, but rather many
academic examples so far
[M. Korda, I. Mezic. Optimal construction of Koopman
eigenfunctions for prediction and control]
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2 – For identification and observation problems

Again data-based observation should be avoided
But rather AI needs to be coupled with physical models and
classical observation techiques

One example in navigation and object tracking problems:

identification and calibration of unknown parameters

observation using noisy and biaised measurements

é by coupling of Machine Learning with Kalman Filter.
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navigation problem

Given one (or several) gyroscope, accelerometer and magnetometer

How to observe the position, the orientation and the magnetic
heading of the body?

Industrial developement with Sysnav
The continuous-time dynamic model is nonlinear, time-varying in
non-Euclidian space:

dq
dt = 1

2 [ω×]q quaternion
dvb
dt = −ω × vb + ab − Rg speed

dMn
dt = R>vb position
dBb
dt = −ω × Bb +∇Bbvb magnetic field

in the body frame
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Calibration problem

Magnetometer:

y ib = αi
bB

i
b + βi i = x , y , z

where αi and βi are not very well known or slowly varying
Needs to be calibrated

Optimization algorithm has been used to find the best αi
b and βib

To do that we used the physical model of magnetometer and
motion capture measures
See [Chesneau, et al.; 2019]
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Observation problem

The previous model is nonlinear and may be non-observable
(depending on the to-be-observed trajectory)
Let us compute an Extended Kalman Filter
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Using an EKF only

Using and EKF and checking the position with a motion capture
system

True speed Estimated speed True position Estimated position
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EKF and LSTM

Learning from several training trajectories with motion capture
data using a Long Short-Term Memory (LSTM) approach
And adding the LSTM output as an input of the Kalman Filter
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Combined with AI

Combining an EKF with a LSTM

True speed Estimated speed True position Estimated position

See Makia Zmitri and the joint work with Sysnav
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3 – Control techniques for AI?

System theory is very useful for estimating the
Uncertain quantification and uncertainty propagation

There is already a very large literature developping control
techniques for AI

Use of statistical model

Use of robust control design

Still a lot of things to be done.
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Some references on that

• Use of statistical techniques for uncertainty propagation.
Sensitivity analysis
See the book [S. D. Veiga, F. Gamboa, et al.; 2020]
• Use linear optimal control problems to understand performance
of Reinforcement Learning techniques
See [P. Seiler et al., Recovering Robustness in Model-Free
Reinforcement Learning; 2019] and ONERA (Biannic, Loquen...)
• Large literature on nonlinear control systems, in particular with
isolated nonlinearities [Tarbouriech et al.; 2011].
Such elements could be used in AI to prove properties of neural
networks
[L. Grigoryeva and J.-P. Ortega; 2018], [H. Jaeger; 2001]
to cite just a few

Still need your attention!

20/22 AIBot MIAI



Conclusion

How AI and scientific computation could be useful
for control objectives:

reduced-order modelling and simulation

identification

observation

(and control)

And vice versa
RL and AI could be better understood and useful
using systems theory:

statistical estimators and sensitivity analysis

robust control

nonlinear controlled
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Matchmaking of Automatic Control and AI

support from the Chair on AI and Automatic Control and
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