

HW/SW co-engineering in ECSS-E-ST-40C Rev1 and ECSS-E-ST-20-40C standards

Agustin Fernandez Leon & Christophe Honvault

21/10/2020

European Space Agency

Software and Hardware ECSS standards

- ECSS-E-ST-40C "Software" covers all aspects of space software engineering including requirements definition, design, production, verification and validation, transfer, operations and maintenance.
- ECSS-Q-ST-80C "Software Product Assurance" defines a set of software product assurance requirements to be used for the development and maintenance of software for space systems.
- ECSS-Q-ST-60-02C "ASIC and FPGA development" defines a comprehensive set of requirements for the user development of digital, analog and mixed analog-digital custom designed integrated circuits, such as application specific integrated circuits (ASICs) and field programmable gate arrays (FPGAs). It covers programme management, engineering and quality assurance.

Agustin Fernandez Leon & Christophe Honvault | 21/10/2020 | Slide 2

= II 🛏 :: 🖛 + II 💻 🚝 = II II = = : :: 🖬 🛶 💵 II = :: II 🗰 💥 🛀

HW/SW Co-Engineering and ECSS

- System-on-Chips start to be largely used in space systems. The links between the microprocessor executing the software and the FPGA implementing hardware logic need to be tightened
- The need for an optimized process to develop on SoC has been identified.
- There is a rare opportunity to implement this into ECSS:
 - Revision of the ECSS-E-ST-40C "Software" is on-going
 - New ECSS-E-ST-20-40C "ASIC and FPGA engineering" is in preparation, ECSS-Q-ST-60-02C will be updated accordingly.
- Working Groups of ECSS-E-ST-40C Rev1 and ECSS-E-ST-20-40C are communicating. First accomplishment: Definition of Software converging to:

software

set of instructions and data executed on a processing platform

Agustin Fernandez Leon & Christophe Honvault | 21/10/2020 | Slide 3

= II 🛌 ## II = 🚝 = II II = = ## 🖬 II = ## ## II 🗰 ##

ECSS-E-ST-40C Rev1

• ...

- A Change Request identifies the need of the introduction of a coordinated HW (FPGA) and SW process:
 - Early identification of the decomposition between Hardware and Software and required interfaces (e.g. similar to the SSS/IRD in ECSS-E-ST-40C): benefit of the best of the two worlds.
 - Identification of key points/deliveries during the design and development phases: what is defined/delivered and when, ensure a smooth development.
 - Identification of co-verification and co-validation activities: ensure the early identification of issues and the best correction to apply.
 - Definition of a consistent configuration management: ensure that both hardware and software are made to work together.

ECSS-E-ST-20-40 "ASIC/FPGA Engineering" status eSa

WG kick-off in July 2019:

2 years of work planned to have draft for public review by July 2021

WG is 12 members (ESA, CNES, ADS, TAS, IMEC, Ariane Group, GMV, RAL) + 12 experts (TESAT, ADS, ESA Microelectronics section)

120 requests for changes gathered between 2017 and 2019 from industry and agencies => Engineering chapters and requirements of ECSS-Q-ST-60-02C under thorough review/improvement to create a new ECSS-E-ST-20-40. Revised ECSS-Q-ST-60-02 will have only PA requirements.

Progressing well, bit slower than planned, 5 new additional meetings were held to accelerate. 16 meetings held so far. Estimated 6 months delay due to WG debates to improve structure (new chapters) and content (better and new requirements), and working in two separate books: E (eng requirements) and Q (product assurance req) -> PUBLIC REVIEW expected Q4-2021

380 requirements under detailed review:

55% already reviewed and dispositioned

emphasis on: higher clarity,

covering different flows for ASIC (dig and analog), FPGAs and IP Cores, consistent with SW ECSS-E-ST-40 /Q-ST-80 std,

facilitate tailoring per flow and criticality, including IP development

Agustin Fernandez Leon & Christophe Honvault | 21/10/2020 | Slide 5

European Space Agency

ASIC/FPGA Engineering development flow

The following **readable code and binary files** are used during several development steps of ASICs and/or FPGAs. - WARNING – they might look and feel like "software", <u>BUT THEY ARE NOT !</u>

50	Hardware Description Language models of ICs (e.g. Verilog, VHDL, SystemC, etc.)
 Scripts to automate and	d control many
IC design steps (e.g. HDL	code syntax
analysis, behavioral simul	ations, netlist
generation, timing analys	is, place and
route design rules checks	, test mode
insertion, mitigation techr	niques
insertion, production test	vectors
generation, etc.) Those de	esign steps
involve many specialized	CAD/EDA
tools, requiring their own	"constraint
files" and/or "script langu	ages"

the final product is an **Integrated Circuit**. The files above are used as "inputs" to the various "IC design tools" needed to create the microchip.

Agustin Fernandez Leon & Christophe Honvault | 21/10/2020 | Slide 6

= II 🛌 ## ## II 💻 🚝 == II II = = = ## 🛶 🔯 II == ## ##

European Space Agency

ECSS-E-ST-20-40 ASIC/FPGA/IP Engineering

3.2.23 software

set of instructions and data executed in a processing platform

NOTE 1 Hardware Description Language files are not software.

NOTE 2 integrated circuit models intended to generate HDL models are not software.

NOTE 3 bit streams used to programme FPGAs are not software.

ECSS-E-ST-40 Software Engineering

3.2.29 software

set of instructions and data executed on a processing platform

NOTE 1: A processing platform can be hardware, e.g. a processor or software, e.g. a virtual machine or an interpreter.

NOTE 2: Some processing platforms only require data, e.g. configuration of state machines or configuration data of a neural network

Agustin Fernandez Leon & Christophe Honvault | 21/10/2020 | Slide 7

· = ■ ▶ = = + ■ + ■ = ≔ = 1 ■ ■ = = = = ■ ■ ■ ■ ■ = = = ₩ ₩ ₩

Definition of term

"SOFTWARE"

final details to be

agreed for both standards by both WGs

Integrated Circuits embedding processing cores

So... what happens if the Integrated Circuit to be developed contains one (or more) "**processing core(s)**" that will use:

CASE 1: ANY "sets of instructions and data" compatible with the processor core(s) architecture(s), to be developed by an a-priorinot-known software team, to perform many functions (not known yet).

CASE 2: Several "set of instructions and data" to be developed by a known or unknown software teams, to perform several functions within several systems, in a several missions.

CASE 3: A specific "set of instructions and data" to be developed by a known software team, to perform certain functions within a specific system, in a specific mission

EXAMPLES

Agustin Fernandez Leon & Christophe Honvault | 21/10/2020 | Slide 8

_ II 🛌 ## ## II 💻 🚝 __ II II __ __ ## 🖬 🚺 II __ ## 🌆

ASIC/FPGA Engineering development flow

Overview of Software life cycle process

Software operation process (5.9)

AR

DDF. DJF

CUSTO MER

MF, OP

AR

DDF

DJF, MF

ASIC/FPGA Engineering development flow

Overview of Software life cycle process

Software operation process (5.9)

AR

DDF. DJF

CUISTO MER

MF, OP

AR

DDF

DJF, MF