
C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

Deployment of the PUS-C
Standard in Projects supported by
an Automatic Generation Toolset

Final Presentation

15 May 2020 PUS C Gen - Final Presentation

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

Agenda

15 May 2020 2PUS C Gen - Final Presentation

• Project Context and Overview
• Part I: PUS foundation modelling
• Part II: The PUS C Toolset
• Part III: Applying MSC & SDL modelling

to PUS
• Part IV: Applications, Parallel activities

and Future Work
• Conclusions

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

Project Context

15 May 2020 3PUS C Gen - Final Presentation

Given the size of the PUS-C document, this project
aimed at tackling a few potential problems with the
new version of the standard:

• Internal consistency (production of contents in a
systematic way according to the foundation
model)

• Usability (production of a toolset easing the
tailoring of the PUS standard)

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

Project Overview

15 May 2020 4PUS C Gen - Final Presentation

The objectives of the PUSCGen project are the
following (1/2):

• Verify and validate the PUS foundation model
(clause 5);

• Extend the PUS foundation model to capture
missing semantics to fully cover the functional spec
(clause 6);

• Using an ORM tool, develop a PUS foundation
database and populate it with the standardized PUS
data;

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

Project Overview

15 May 2020 5PUS C Gen - Final Presentation

The objectives of the PUSCGen project are the
following (2/2):

• Develop a document generator able to reproduce
the full standard or tailored versions of it;

• Develop an ASN.1 code generator able to cover the
full scope of PUS services or tailored versions of
them;

• Verify and illustrate the PUS system requirements
through modelling in SDL and MSC formalisms.

• Verify the developed tools using a realistic use case.

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

PUS foundation model

15 May 2020 6PUS C Gen - Final Presentation

The PUS foundation is a conceptual model

• Captures the generic PUS concepts with associated rules
• Provides rules that are applicable to any service type and

their instances
• Is expressed in clause 5 of the PUS-C Standard

Conceptual modelling is supported by formal methods and
tools

• Selected method: Object Role Modelling (ORM)
• Selected tool: NORMA

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

PUS foundation model

15 May 2020 7PUS C Gen - Final Presentation

Contents of an ORM model:
• Object types: The concepts
• Fact types: The relations between these concepts
• Constraints: Restrictions on the valid populations

The PUS specification (Clauses 6 & 8) is a population of
this model !

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

PUS foundation model

15 May 2020 8PUS C Gen - Final Presentation

Methodology

1. Review of an ESA provided input ORM model
• Adequacy of the existing diagrams w.r.t. PUS clause 5
• Completeness of existing model (identification of requirements

present in clause 5 but not modelled)
2. Review of the PUS standardised service types

specification against foundation model
• Identify requirements violating the foundation model
• Identify requirements not covered by the foundation model

3. Assess feasibility of generating study outputs
• Database software
• Generated PUS standards (clauses 6 & 8)
• ASN.1 & ACN representation of the PUS interfaces

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

PUS foundation model

15 May 2020 9PUS C Gen - Final Presentation

Generation assessment
• Identify the skeleton of the PUS
• Verify that all information is captured in model

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

PUS foundation model

15 May 2020 10PUS C Gen - Final Presentation

Generation assessment
• Identify the skeleton of the PUS
• Verify that all information is captured in model

One main limitation
• Each subservice type defines and/or accesses “System

Objects” (e.g. “Function”, “Memory”,…)
• Those are only modelled in a generic way
• Specific modelling has been performed in the scope of

ATOP, to further refine the PUS model.

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

Modelling activity outcomes

15 May 2020 11PUS C Gen - Final Presentation

Lessons learned document produced gathering:
• Valuable feedback on using the NORMA tool for

performing conceptual modelling
• 21 change requests towards the PUS-C standard,

out of which
• 7 are considered major (The specification has a

functional problem)
• 7 are considered minor (The specification lacks

internal consistency, or is not covered by the
foundation)

• 7 are considered editorial only.

Relational database directly generated from the ORM
model to support the toolset development.

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

PUS-C Toolset

15 May 2020 12PUS C Gen – Final Presentation

• The toolset consists of 3 applications that work together:
• Population Tool

• population definition and tailoring
• DOC-GEN

• ECSS-E-ST-70-41C compatible document generation
• ASN1-GEN

• population tailoring and ASN.1/ACN generation

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

PUS-C Toolset workflow (part 1)

15 May 2020 13PUS C Gen – Final Presentation

• Define common concrete and abstract (to be tailored) types
• Define service types
• Define subservice types
• Define capability types
• Define message types (request and report types)
• Define instruction and notification types
• Define instruction arguments and notification reporting data
• Define conditions, functionalities, objects...

• No need to write the requirements manually – just capture
the essence of a given service type within the constraints of
the PUS Foundation Model

• Describe X type, not X instance (to be tailored per-mission)

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

PUS-C population

15 May 2020 14PUS C Gen – Final Presentation

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

PUS-C population

15 May 2020 15PUS C Gen – Final Presentation

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

Document generation

15 May 2020 16PUS C Gen – Final Presentation

• The database population can be used to generate
requirements and descriptions structured as chapters 6 and
8, as well as annexes C and D of ECSS-E-ST-70-41C

• Population representing the entire PUS C standard was
created during the project, allowing to recreate the ECSS
standard with good fidelity (given a suitable template,
containing other chapters, (mostly) not dependent on
particular service types)

• In many cases, a generated page is hard to distinguish from
the actual standard

• Some discrepancies were detected and reported to ESA

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

PUS-C standard document

15 May 2020 17PUS C Gen – Final Presentation

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

PUS-C Toolset workflow (part 2)

15 May 2020 18PUS C Gen – Final Presentation

• Provide mission-specific tailoring:
• Select service types
• Select subservice types
• Select capability types
• Provide definitions of the abstract types
• [if required] Adjust arguments and reporting data

• Selection is subject to constraints defined in the population
(capabilities depend on each other, or exclude each other;
some can be declared, some are required)

• Abstract type tailoring and argument/reporting data
adjustment are performed by providing/editing ASN.1/ACN

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

ASN.1/ACN generation+

15 May 2020 19PUS C Gen – Final Presentation

• Tailored population can be used to generate ASN.1/ACN
definitions of TC and TM

• The process requires a set of ASN.1/ACN definitions
reflecting (e.g.) CCSDS packet encapsulation (see ECSS-E-
ST-70-41C chapter 7) - the so-called implicit knowledge

• The ASN.1/ACN definition can be used by ESA's ASN1SCC
compiler to generate:
• data structures
• encoders/decoders (C, with optional Python bindings)
• ICDs
• and more...

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

PUS-C demonstration ICD

15 May 2020 20PUS C Gen – Final Presentation

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

PUS-C demonstration ICD

15 May 2020 21PUS C Gen – Final Presentation

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

SDL modelling

15 May 2020 22PUS C Gen – Final Presentation

• Almost all PUS C services follow a very simple,
practically stateless template

• Only a few services are more complex or interesting for
SDL modelling
•The following services were modelled:

• service 1 (very different from other services)
• "generic PUS C service" (a template)
• service 6
• service 9
• service 12

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

Parameter monitoring (in PUS 12)

15 May 2020 23PUS C Gen – Final Presentation

• Follows the generic template, customized for readability
• Reacts to requests, transitions and reporting delay
• Implements high-level handling of all instructions

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

Parameter monitoring process

15 May 2020 24PUS C Gen – Final Presentation

• Very simple
• Comments trace to ECSS requirements

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

Parameter monitoring definition

15 May 2020 25PUS C Gen – Final Presentation

• Quite complex, with nested states

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

Parameter monitoring definition

15 May 2020 26PUS C Gen – Final Presentation

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

MSC modelling

15 May 2020 27PUS C Gen – Final Presentation

• MSC diagrams are based on
SDL models: entities, states, signals,
and critical (depending on the scenario)
conditions, loops, actions correspond to
their SDL equivalents

• A choice of the most relevant scenarios,
each representing a particular state of
conditions – one SDL diagram
usually corresponds to multiple MSC
diagrams

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

SDL and MSC modelling

15 May 2020 28PUS C Gen – Final Presentation

• SDL and MSC modelling is complementary
• MSC modelling discovered issues in SDL models
• SDL models were improved based on the feedback
• Generation of certain Service 1 notifications is not properly

defined in the standard
• Early adoption of SDL and MSC modelling during the

standard preparation could improve the standard readability,
quality and formalism

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

Use Case Validation using Proba 3 as a use case
● Install all required tools on an empty

environment;
● Create a non-standard PUS service and add a

non-standard subservice to a standard service;
● Tailor these services with mission parameters;
● Generate the corresponding ICD, PUS

specification, and ASN.1 data.

Toolset deployment – Proba 3

15 May 2020 PUS C Gen - Final Presentation

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

Add a mission-specific subservice:
● Extend service 3 with HK compression subservice

(Pocket)
● Provided capabilities:

● Generate compressed housekeeping telemetry packet
● Define Housekeeping Compression Configuration
● Define Housekeeping Compression Reference Packet
● Define Housekeeping Compression Packet Mask
● Delete Housekeeping Compression Configuration
● Enable Housekeeping Compression
● Disable Housekeeping Compression
● Generate new housekeeping compression mask
● Send On-board generated housekeeping compression mask

Toolset deployment – Proba 3

15 May 2020 PUS C Gen - Final Presentation

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

Add a mission specific service: Reaction wheels management (S8 in Proba3)
● Reaction wheels commanding subservice:

● Activate one reaction wheel
● Activate three reaction wheels
● Activate four reaction wheels
● Deactivate one reaction wheel
● Deactivate all reaction wheels

● Reaction wheels FDIR subservice:
● Invalidate reaction wheel
● Power-cycle reaction wheel

● Reaction wheels Rate Sensors management subservice:
● Enable/disable rate sensor
● Invalidate rate sensor

● Reaction Wheels direct commanding subservice:
● Send direct command to reaction wheel
● Generate reaction wheel report

Toolset deployment – Proba 3

15 May 2020 PUS C Gen - Final Presentation

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

All added capabilities could be inserted, and
produces:
● An XML file containing the resulting population after

tailoring, which can be imported into an empty
PUS-C Gen database;

● The PUS-C Specification word document;
● The ICD (html document) after tailoring, generated

from the ASN.1 data.

Toolset deployment – Proba 3

15 May 2020 PUS C Gen - Final Presentation

ECSS-E-ST-70-41C

15 April 2016

[image: ecss-logo]ECSS-E-ST-70-41C

15 April 2016

[image: ecss-logo-capture10July2008]

Space engineeringECSS Secretariat

ESA-ESTEC

Requirements & Standards Division

Noordwijk, The Netherlands

Telemetry and telecommand packet utilization

Foreword

This Standard is one of the series of ECSS Standards intended to be applied together for the management, engineering and product assurance in space projects and applications. ECSS is a cooperative effort of the European Space Agency, national space agencies and European industry associations for the purpose of developing and maintaining common standards. Requirements in this Standard are defined in terms of what shall be accomplished, rather than in terms of how to organize and perform the necessary work. This allows existing organizational structures and methods to be applied where they are effective, and for the structures and methods to evolve as necessary without rewriting the standards.

This Standard has been prepared by the ECSS-E-ST-70-41C Working Group, reviewed by the ECSS Executive Secretariat and approved by the ECSS Technical Authority.

Disclaimer

ECSS does not provide any warranty whatsoever, whether expressed, implied, or statutory, including, but not limited to, any warranty of merchantability or fitness for a particular purpose or any warranty that the contents of the item are error-free. In no respect shall ECSS incur any liability for any damages, including, but not limited to, direct, indirect, special, or consequential damages arising out of, resulting from, or in any way connected to the use of this Standard, whether or not based upon warranty, business agreement, tort, or otherwise; whether or not injury was sustained by persons or property or otherwise; and whether or not loss was sustained from, or arose out of, the results of, the item, or any services that may be provided by ECSS.

Published by: 	ESA Requirements and Standards Division

	ESTEC, P.O. Box 299,

	2200 AG Noordwijk

	The Netherlands

Copyright: 	2016© by the European Space Agency for the members of ECSS

[bookmark: _Toc447218008]Change log		ECSS-E-70-41A

30 January 2003

		First issue

		ECSS-E-70-41B

		never issued

		ECSS-E-ST-70-41C

15 April 2016

		Second issue

The main purpose of the update of ECSS-E-70-41A to ECSS-E-ST-70-41C was the need:

· to remove the deficiencies of issue A and to inject lessons learned,

· to improve the standard to meet the need for future missions,

· to acknowledge the existence of new ECSS and CCSDS standards and to ensure consistency,

· to implement the ECSS drafting rules that apply to any ECSS Standards (e.g. naming each requirement to facilitate tailoring, traceability),

· maintaining backward compatibility when possible.

The main changes are:

· the introduction of the PUS foundation model that:

· has been used to produce the “standard service types”;

· shall be used to produce the “mission-specific service types”, i.e.:

· adding new service types, subservice types, message types, etc;

· adding capabilities to the ”standard service types”;

· shall be used to produce the “mission services”, i.e.:

· creating the required services by:

· “realising the service types”, and

· inheriting all mandatory subservices and minimum capabilities;

· selecting, for each service, the additional capabilities, the optional subservices, etc;

· creating the service specific definitions.

· a proper separation of system versus interface requirements.

Table of contents

1 Scope	9

2 Normative references	11

3 Terms, definitions and abbreviated terms	12

3.1	Terms from other standards	12

3.2	Terms specific to the present standard	12

3.3	Abbreviated terms	16

4 Context and background	18

4.1	Introduction	18

4.2	Modelling the PUS	21

4.2.1	General	21

4.2.2	The PUS foundation model	22

4.2.3	The service type model	22

4.2.4	The space system service model	24

5 The PUS foundation model	25

5.1	Introduction	25

5.2	Convention	26

5.3	The generic service type abstraction level	26

5.3.1	General	26

5.3.2	Subservice type	27

5.3.3	Message type	28

5.3.4	Capability type	32

5.3.5	Transaction type	33

5.3.6	Tailoring the generic service type abstraction level	38

5.4	The generic service deployment abstraction level	38

5.4.1	Introduction	38

5.4.2	Application process	39

5.4.3	Interfaced system objects	40

5.4.4	Checksum algorithm	44

5.4.5	On-board file system	45

5.4.6	Service	45

5.4.7	Subservice	46

5.4.8	Capability	47

5.4.9	Failed progress of execution	47

5.4.10	Transaction	47

5.4.11	Message	48

5.4.12	Building the space system architecture	53

6 Service type system requirements	55

6.1	ST[03] housekeeping	55

6.1.1	Scope	55

6.1.2	Service layout	56

6.1.3	Housekeeping reporting subservice	57

6.1.4	Diagnostic reporting subservice	65

6.1.5	Parameter functional reporting configuration subservice	74

6.1.6	Housekeeping telemetry compression subservice	82

6.2	MS[129] Reaction wheels management	88

6.2.1	Scope	88

6.2.2	Service layout	88

6.2.3	Reaction wheels commanding subservice	89

6.2.4	Reaction wheels FDIR subservice	91

6.2.5	Reaction wheels Rate Sensors management subservice	92

6.2.6	Reaction Wheels direct commanding subservice	93

7 Space to ground interface requirements	95

7.1	Introduction	95

7.1.1	Packets	95

7.1.2	Packet transport	96

7.2	Convention	97

7.2.1	Structure diagram	97

7.2.2	Bit-field numbering	98

7.3	Packet field type code	98

7.3.1	General	98

7.3.2	Boolean	99

7.3.3	Enumerated	100

7.3.4	Unsigned integer	100

7.3.5	Signed integer	101

7.3.6	Real	101

7.3.7	Bitstring	102

7.3.8	Octetstring	103

7.3.9	Characterstring	103

7.3.10	Absolute time	105

7.3.11	Relative time	106

7.3.12	Deduced	107

7.3.13	Packet	107

7.4	The CCSDS Space Packet	108

7.4.1	Overview	108

7.4.2	General	109

7.4.3	Telemetry packet data field	109

7.4.4	Telecommand packet data field	112

8 Service type interface requirements	115

8.1	ST[03] housekeeping	115

8.1.1	General	115

8.1.2	Requests and reports	115

8.1.3	Enumeration	141

8.2	EXT[129] Reaction wheels management	141

8.2.1	General	141

8.2.2	Requests and reports	142

9 Command Pulse Distribution Unit	146

9.1	Scope	146

9.2	System requirements	146

9.2.1	CPDU	146

9.2.2	Accessibility	147

9.2.3	CPDU request	148

9.3	Interface requirements	148

9.3.1	CPDU request	148

Figure A-1 Single-precision real encoded value structure	151

Table A-1 Single-precision real parameter encoded values	151

Figure A-2 Double-precision real parameter encoded value structure	151

Table A-2 Double-precision real parameter encoded values	152

Figure A-3 Single-precision floating-point data structure	153

Table A-3 Some examples of 32-bit floating-point numbers	153

Figure A-4 extended floating-point data structure	154

Table A-4 Some examples of 48-bit extended floating-point numbers	154

Table B-1 CRC symbols and conventions	156

Table B-2 Verification of CRC compliance	157

Table B-3 ISO symbols and conventions	163

Table B-4 Verification of ISO compliance	164

Table C-1 Housekeeping reporting message types	169

Table C-2 Diagnostic reporting message types	170

Table C-3 Parameter functional reporting configuration message types	172

Table C-4 Housekeeping telemetry compression message types	173

Table C-5 Reaction wheels commanding message types	175

Table C-6 Reaction wheels FDIR message types	176

Table C-7 Reaction wheels Rate Sensors management message types	176

Table C-8 Reaction Wheels direct commanding message types	177

[bookmark: _Toc447218009]IntroductionThe CCSDS Space Packet Protocol (CCSDS 133.0-B-1) and the ECSS-E-ST-50 series of standards address the end-to-end transport of telemetry and telecommand data between user applications on the ground and application processes on-board the spacecraft, and the intermediate transfer of these data through the different elements of the ground and space segments.

This packet utilization standard (PUS) complements those standards by defining the applicationlevel interface between ground and space, in order to satisfy the requirements of electrical integration and testing and flight operations.

[bookmark: _Toc447218010][bookmark: _Toc9958236]
Scope

This Standard addresses the utilization of telecommand packets and telemetry packets for the purposes of remote monitoring and control of spacecraft subsystems and payloads.

This Standard does not address missionspecific payload data packets, but the rules contained herein can be extended to suit the requirements of any mission.

This Standard does not address audio and video data as they are not contained within either telecommand or telemetry packets.

This Standard defines a set of services that satisfy all the fundamental operational requirements for spacecraft monitoring and control during spacecraft integration, testing and flight operations, refer to ECSS-E-ST-70-11. It also specifies the structure and contents of the telecommand packets used to transport the requests and the telemetry packets used to transport the reports.

This Standard can be used by any mission, no matter what its domain of application, orbit or ground station coverage characteristics. However, it is not the intention that the PUS should be applied in its entirety to a given mission. The services defined in this Standard cover a wide spectrum of operational scenarios and, for a given mission, only a subset of these services is likely to be appropriate.

Choices are made early in the design phase of a new mission resulting in the need to tailor the PUS to suit the requirements of that mission. These choices include:

the on-board system design and architecture, in terms of the number of on-board application processes, their on-board implementation (e.g. the allocation to on-board processors) and their roles (i.e. which functions or subsystems or payloads they support);

which PUS services are supported by each application process.

Each mission usually documents the results of this design and selection process in a "Space-to-Ground Interface Control Document".

Some missions implement a centralized architecture with a small number of application processes, whilst others have a highlydistributed architecture within which a correspondingly larger number of application processes are distributed across several on-board processors.

The specification of services in this Standard is adapted to the expectation that different missions require different levels of complexity and capability from a given service. To this end, all services are optional and a given service can be implemented at one of several distinct levels, corresponding to the inclusion of one or more capability sets. The minimum capability set corresponds to the simplest possible level that also remains sensible and coherent. At least this set is included in every implementation of a given service.

The standardized PUS services fulfil the following criteria:

Commonality: each standard service corresponds to a group of capabilities applicable to many missions.

Coherence: the capabilities provided by each standard service are closely related and their scope is unambiguously specified. Each standard service covers all the activities for managing interrelated state information and all activities that use that state information.

Self-containment: each standard service has minimum and well-defined interactions with other services or on-board functions.

Implementation independence: the standard services neither assume nor exclude a particular spacecraft architecture (hardware or software).

This Standard mainly addresses the requirements that apply to the spacecraft and its components. The ground segment counterpart requirements related to the testing or the operations of the spacecraft and its components can be derived from these requirements and are not specified in this Standard. Tailoring the PUS for a mission is mainly a task for the operations team and the spacecraft manufacturer. This Standard assumes that the mission ground segment used to test or operate the spacecraft implements all standardized capabilities and as such, does not further constrain the mission tailoring process of these capabilities.

The PUS should be viewed as a "Menu" from which the applicable services and servicelevels are selected for a given mission. This selection process is repeated for each on-board application process, since each application process is designed to provide a specific set of tailored services.

This standard may be tailored for the specific characteristics and constraints of a space project in conformance with ECSS-S-ST-00.

This Standard does not include any protection against inadequate operations. This is considered mission specific.

[bookmark: _Toc447218011][bookmark: _Toc9958237]
Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this ECSS Standard. For dated references, subsequent amendments to, or revision of any of these publications do not apply. However, parties to agreements based on this ECSS Standard are encouraged to investigate the possibility of applying the more recent editions of the normative documents indicated below. For undated references, the latest edition of the publication referred to applies.

		ECSS-S-ST-00-01

		ECSS system – Glossary of terms

		ECSS-E-ST-70

		Space engineering – Ground systems and operations

		ECSS-E-ST-70-01

		Space engineering – Spacecraft on-board control procedures

		ECSS-E-ST-70-11

		Space engineering – Space segment operability

		ECSS-E-ST-70-31

		Space engineering – Ground systems and operations – Monitoring and control data definition

		CCSDS 133.0-B-1, September 2003

		Space Packet Protocol, Blue Book

		CCSDS 301.0-B-4, November 2010

		Time Code Formats, Blue Book

[bookmark: _Toc447218012][bookmark: _Toc9958238]
Terms, definitions and abbreviated terms

[bookmark: _Toc447218013][bookmark: _Toc9958239]Terms from other standards

For the purpose of this Standard, the terms and definitions from ECSS-S-ST-00-01 apply, in particular for the following terms:

space system

space segment

spacecraft

ground segment

[bookmark: _Toc447218014][bookmark: _Toc9958240]Terms specific to the present standard

acceptance notification

notification that is generated by the acceptance and reporting subservice provider of the application process that hosts the subservice provider in charge of executing the related request

acceptance verification report

report generated by the acceptance and reporting subservice provider as a consequence of a request acceptance verification

The acceptance and reporting subservice for a request is hosted by the application process that hosts the subservice responsible for executing that request. Each acceptance verification report is reporting either the successful acceptance of a request or the failed acceptance. In case of successful acceptance, the request is sent to the subservice provider in charge of its execution. In case of failed acceptance, the request is rejected and as such, not sent to any subservice provider.

application process

element of the space system that can host one or more subservice entities

An application process resides either on-board or on ground. An on-board application process usually hosts some subservice providers but can also host some subservice users. A ground application process usually hosts some subservice users. If a ground application process is remotely controlled by the ground monitoring and control system, that application process behaves as an on-board application process and can host some subservice providers.

capability

functionality of a service or a subservice

A capability is specified by a set of operational requirements for a function of the overall space system that can be remotely controlled by the ground monitoring and control system or by other on-board applications. This Standard mainly addresses these remote controlled related requirements and especially those applicable to the subservice providers.

data report

report generated by a subservice provider as part of the subservice functionality

A data report can be generated in response to a request or to an instruction to elicit some specific service data. A data report can also be generated autonomously, when reports are enabled by a request, or as part of a continuous reporting functionality.

event report

report related to an occurrence of an event

Event reports are generated by the subservice providers.

execution notification

notification that is generated by the subservice provider in charge of execution of the related instruction

An execution notification reports on the successful or failed execution of an instruction. This Standard does not specify how the notifications are implemented on-board, nor how the subservice providers in charge of their generation interact with the subservice providers in charge of generating the corresponding execution verification reports.

execution verification report

report generated by the execution reporting subservice provider of an application process as a consequence of the reception of one or more execution notifications

The execution reporting subservice for a request is hosted by the application process that hosts the subservice responsible for executing that request. Each execution verification report is reporting either a successful or a failed execution stage (start, progress or completion) of a request.

instruction

elementary constituent of a request that is generated by a subservice user for execution by a subservice provider

message

request or report

notification

elementary constituent of a report than is generated by a subservice provider for interpretation by a subservice user

object path

combination of a repository path and a file name or directory name

on-board file system

system used to control data organised in files

on-board memory

logical memory space

The on-board memories can potentially be managed by different on-board processors. The mapping between the on-board memories and the physical memories is out of the scope of this Standard.

on-board parameter

lowest level of elementary data item on-board

A parameter has a unique interpretation.

report

message made of one or more notifications generated by a subservice provider for interpretation by a subservice user

This Standard identifies three types of reports:

verification reports,

data reports, and

event reports.

repository path

logical path to where a file or a directory is located

A repository path can either represent a physical path such as a directory path within a file system or a logical path such as a mounted device (e.g. "/mm1"pointing to a mass memory device), a directory within a mounted device (e.g. "/mm1/dir1").

request

message consisting of one or more instructions generated by a subservice user for execution by a subservice provider

routing notification

notification that is generated by a routing and reporting subservice provider as a consequence of a request routing verification

routing verification report

report generated by a routing and reporting subservice provider as a consequence of a request routing verification

The routing verification reports are generated by the application processes that are involved in the routing of a request between a subservice user and a subservice provider. The routing and reporting subservice generates a failed routing verification report to inform a subservice user of the impossibility of pursuing the routing of the request, e.g. because of corruption of that request during the routing.

service

functional element of the space system that provides a number of closely-related functions that can be remotely operated

Each service is composed of one or more subservices, where each subservice involves a subservice provider and one or more subservice users. A subservice provider is in charge of performing some space system functions. A subservice user is in charge of issuing requests for the execution of those functions and of processing the resulting feedback.

subservice

elementary constituent of a service composed of exactly one subservice provider and the related subservice users that are interacting through dedicated sets of messages

subservice entity

operational element of a subservice hosted by an application process that acts as subservice user or subservice provider

subservice provider

operational element of a subservice that is in charge of execution of the subservice requests and generation of the subservice reports

subservice user

operational element of a subservice that is in charge of initiating the subservice requests and processing the subservice reports

transaction

set of messages related to the execution of exactly one capability which are exchanged between a subservice user and a subservice provider

The different types of transactions defined in this Standard are:

request related transaction,

autonomous data reporting transaction, and

event reporting transaction.

verification report

routing, acceptance or execution verification report

[bookmark: _Toc447218015][bookmark: _Toc9958241]Abbreviated terms

For the purpose of this Standard, the abbreviated terms from ECSS-S-ST-00-01 and the following apply:

		Abbreviation

		Meaning

		ANSI

		American National Standards Institute

		AOCS

		attitude and orbit control subsystem

		APID

		application process identifier

		ASCII

		American standard code for information interchange

		CCSDS

		Consultative Committee for Space Data Systems

		CDS

		CCSDS day segmented

		CPDU

		command pulse distribution unit

		CRC

		cyclic redundancy code

		CUC

		CCSDS unsegmented code

		ESA

		European Space Agency

		FDIR

		fault, diagnostic, isolation and recovery

		FMON

		functional monitoring

		GPS

		global positioning system

		ID

		identifier

		IEEE

		Institute of Electrical and Electronics Engineers

		ISO

		International Organization for Standardization

		LSB

		less significant bit

		MAP

		multiplexer access point

		MIL-STD

		United States military standard

		MSB

		most significant bit

		OBCP

		on-board control procedure

		PCS

		packet check sequence

		PFC

		packet field format code

		PMON

		parameter monitoring

		PTC

		packet field type code

		PUS

		packet utilization standard

		RAM

		random access memory

		ST

		service type

		TAI

		international atomic time

		TC

		telecommand

		TM

		telemetry

		UTC

		coordinated universal time

1.1 [bookmark: _Toc352164207][bookmark: _Toc365647180][bookmark: _Toc370132951][bookmark: _Toc401158221][bookmark: _Toc445389553]Nomenclature

The following nomenclature applies throughout this document:

1. The word “shall” is used in this Standard to express requirements. All the requirements are expressed with the word “shall”.

The word “should” is used in this Standard to express recommendations. All the recommendations are expressed with the word “should”.

It is expected that, during tailoring, recommendations in this document are either converted into requirements or tailored out.

The words “may” and “need not” are used in this Standard to express positive and negative permissions, respectively. All the positive permissions are expressed with the word “may”. All the negative permissions are expressed with the words “need not”.

The word “can” is used in this Standard to express capabilities or possibilities, and therefore, if not accompanied by one of the previous words, it implies descriptive text.

In ECSS “may” and “can” have completely different meanings: “may” is normative (permission), and “can” is descriptive.

The present and past tenses are used in this Standard to express statements of fact, and therefore they imply descriptive text.

[bookmark: _Toc447218016][bookmark: _Toc9958242]
Context and background

[bookmark: _Toc447218017][bookmark: _Toc9958243]Introduction

This Standard addresses the need to standardize the way the space system functions are defined when involved in an interaction between space and ground.

This Standard introduces the concept of PUS services, consisting of PUS subservices. The services and subservices formalise the closely related and self-contained set of space system functions and all related entities and interaction artifacts.

Each PUS subservice is composed of PUS subservice entities, each one playing either the role of a subservice provider or the role of a subservice user. Each PUS subservice entity is hosted by an application process on-board or on-ground.

As depicted in Figure 41, it is usually understood that the on-board application processes host the subservice providers and the ground application processes the subservice users but this standard does not constrain those relationships. For example, a ground equipment can host some subservice providers so that the equipment can be remotely controlled by a mission control centre, a payload can host some subservice users for controlling solid-state mass memories (e.g. using file management subservices).

No particular topography is assumed in this Standard for how application processes and hosted PUS subservice entities are implemented or distributed, neither is any topography precluded. Thus:

for a given mission, there can be any number of on-board application processes (with a minimum of one), each one hosting any number of PUS subservice entities (with a constraint that a given application process can only host a single subservice entity provider of a given type of subservice);

there are no restrictions on the mapping between application processes and the usual functional subdivision of a spacecraft into subsystems and payloads (at one extreme, with a simple spacecraft topology, there can be a single application process within a centralized data management system which hosts PUS services for all the other platform subsystems and payloads; at the other extreme, intelligent subsystems and payloads can each be served by their own independent application processes and PUS services);

an application process can be implemented in software, firmware or hardware;

an on-board computer can host one or more application processes or an application process can be distributed across two or more on-board computers.

[bookmark: _Ref379289954] [image:]
Figure 41 The space to ground PUS service system context

The information exchanged between a subservice user and subservice provider is termed a "message". A message is transmitted semantically unchanged by the transmission protocol that connects the subservice users and subservice providers.

A message sent by a subservice user to a subservice provider, to invoke the execution of on-board activities, is termed a "request". Each request contains one or more instructions, one for each activity to execute. A message sent by a subservice provider to a subservice user is termed a "report". Each report contains one or more notifications.

Three distinct categories of report are distinguished:

1. the verification reports, which report on the routing, acceptance, start, progress and completion of the request execution;

the data reports, which are generated:

on request, as one or multiple responses to the instructions of a request to elicit some specific service data,

autonomously as one or multiple reports activated by a request or, routinely, i.e. as part of a continuous reporting functionality;

the event reports, which carry information related to the occurrences of the events detected by a service.

The request carries information used by the subservice provider to identify the subservice user that issued that request. This is especially interesting if several subservice users can send requests to a given subservice provider. It provides the means to the subservice provider to route the related verification reports and on-request data reports back to the subservice user who invoked the activity.

The routing of the autonomous data reports and of the event reports is either known implicitly (by design) or explicitly (e.g. by using an on-board routing table).

When messages (requests and reports) are exchanged between ground and space, they are encapsulated into CCSDS space packets, refer to clause 7.4.

Figure 42 provides an example of how PUS services can be deployed on-ground and on-board a spacecraft and how commanding with this Standard is understood.

 [image:]

[bookmark: _Ref435177312]Figure 42 A PUS utilization example

The mechanisms which on-board application processes use to communicate with each other and with other on-board entities are implementation-dependent. Historically, spacecraft on-board interfaces have been specified and implemented on a project-by-project basis and any reuse of interfaces has usually been a by-product of reuse of existing spacecraft busses. While it is true that there are a limited number of physical interfaces available for use on-board a spacecraft, the services and access to these interfaces vary considerably between implementations. This Standard does not specify how requests, instructions, reports and notifications are implemented on-board or on-ground. It also does not specify who is in charge of encoding and decoding the telemetry and the telecommand packets.

[bookmark: _Toc447218018][bookmark: _Toc9958244]Modelling the PUS

[bookmark: _Toc9958245]General

The overall PUS concept addressed in this Standard adopts a multi-layer modelling approach. The resulting model formalises the foundations of the PUS entities, in terms of system and interface requirements, together with their instantiation in space and on ground. Requirements can be applied as is or tailored for mission specific needs.

The multi-layer model, depicted in Figure 43 consists of:

the PUS foundation model,

the standard service type model,

the mission-specific service type model, and

the space system service model.

 [image:]

[bookmark: _Ref379295682]Figure 43 The PUS model

Central to the modelling approach is the concept of a service type, which is a container for all requirements related to an interaction between space, and ground capability dedicated to the fulfilment a service objective.

The system requirements, specified in clause 6, define the semantics of each service type including:

the service type concept and related architecture;

the message type concept and related architecture;

the overall service type topology, focusing on the message exchange between the subservice users and the subservice providers.

The interface requirements define the layout and the format (i.e. the syntax) of the interaction protocol used between ground and space service entities. The interface requirements in clauses 7 and 8, specify:

how requests are transported within PUS telecommand packets compliant with the CCSDS Space Packet Protocol;

how reports are transported within PUS telemetry packets compliant with the CCSDS Space Packet Protocol.

[bookmark: _Toc9958246]The PUS foundation model

The PUS foundation model defines the PUS generic concepts, related terms and definitions and the business rules that:

have been used by the authors of this Standard for producing the Standard service type model,

apply to each mission that applies this Standard and define a level of tailoring of the service type model, and

apply to the architects of the mission-specific space system (i.e. both the space segment and the ground segment) who develop and instantiate the tailored service type model for the mission.

The PUS foundation model addresses a generic and abstract definition of the PUS service type model that applies to each service type whether it is standardized or mission-specific.

The PUS foundation model contains the generic rules that apply to each mission that tailors this Standard:

when creating mission-specific subservice types within a standardized service type;

when adding mission-specific service type capabilities and related message types to standardized service types and subservice types;

when creating mission-specific service types with associated subservice types, service type capabilities and related message types.

The PUS foundation model also contains the generic rules that apply to each implementation of a service type.

The PUS foundation model is specified in clause 5.

[bookmark: _Toc9958247]The service type model

Introduction

The PUS service type model includes:

the standardized service types as specified in this Standard, and

mission-specific extensions in terms of:

add-ons to the standard service types,

mission-specific service types.

Standard service types

This Standard contains the specification of a set of standard PUS service types. The choice of which service types are used by a new mission depends on the mission requirements. All service types are optional and a given service type can be implemented at any of several distinct levels and its parameters and functions can be tailored.

The standard service types are listed in Table 41. They include:

service types that provide basic functions such as collecting parameter statistics.

service types that hold requests and release them to another service as appropriate. The time-based scheduling, the position-based scheduling and the event-action service types are examples of service types that hold and release requests following the occurrences of specified events.

service types that provide standardized interfaces, for example to on-board devices, to an OBCP (on-board control procedure) engine or to an on-board file handling system.

The requirements specification of each of the standard service types consists of two parts:

a system requirements specification contained in clause 6 that defines the actions of the service, including its behaviour when it receives a request. The system specification is concerned with the semantics of the requests and reports.

an interface requirements specification contained in clause 8 that defines the syntax of the requests and reports for a service type. The fields in a request or report are defined using the standard PUS field types specified in clause 7.3.

[bookmark: _Ref303085261]Table 41: The standardized service types

		service type

		name

		ID

		request verification

		1

		device access

		2

		housekeeping

		3

		parameter statistics reporting

		4

		event reporting

		5

		memory management

		6

		(reserved)

		7

		function management

		8

		time management

		9

		(reserved)

		10

		time-based scheduling

		11

		on-board monitoring

		12

		large packet transfer

		13

		real-time forwarding control

		14

		on-board storage and retrieval

		15

		(reserved)

		16

		test

		17

		on-board control procedure

		18

		event-action

		19

		parameter management

		20

		request sequencing

		21

		position-based scheduling

		22

		file management

		23

		Note: The reserved service type identifiers were used in previous versions of this Standard. This Standard no longer promotes the use of these service types but does not preclude that existing implementations are reused for new missions.

Mission-specific service types

When applying the PUS Standard, a mission instantiates this Standard by tailoring it for their needs. That instantiation results in a mission-specific packet utilization definition document that is rendered applicable to all partners involved in that mission.

The mission-specific packet utilization definition document contains the mission-specific service type model that includes:

all PUS standardized service types considered suitable for use by that mission, each one tailored according to the mission needs,

all mission-specific additional service types.

[bookmark: _Toc9958248]The space system service model

The space system service model results from the deployment of the service type model for a given mission, i.e. resulting from the space system architecture of that mission.

The space system service model contains the service topology in terms of:

the instances of the service types and related hosting application processes, and

for each instance, its full specification resulting from the tailoring of the related service type.

Deploying the space system service model implies for each on-board application process, selecting the services and related subservice providers to be hosted by that application process. This Standard specifies the following interdependencies between services:

the request verification service is accessible to any other service within the same application process;

the event reporting service and the large packet transfer service are accessible to any other service;

the on-board monitoring service and the event-action service require the presence of an event reporting service;

if an on-board control procedure service supports the capability for configuring the OBCP execution observability level, then that service requires the presence of an event-reporting service, refer to clause Error! Reference source not found..

[bookmark: _Ref379285247][bookmark: FoundationModel][bookmark: _Toc447218019][bookmark: _Toc9958249]
The PUS foundation model

[bookmark: _Toc447218020][bookmark: _Toc9958250]Introduction

The PUS foundation model specifies a generic service and service type model in the form of a set of generic concepts with the associated business rules. The PUS foundation model provides rules that are applicable to any service type, i.e. standardized or mission-specific and any of their instances (i.e. the services).

As any service type definition relies on the PUS foundation model, the architectural consistency of each service type is ensured.

The PUS foundation model defines generic concepts and associated requirements related to two levels of abstractions, i.e.:

The generic service type abstraction level, which specifies the set of generic object types and business rules that are required for ensuring the overall consistency of the service type model. This abstraction level includes all generic object types used to produce, by specialization, the standardized and the mission specific service types.

The generic service deployment abstraction level, which specifies the set of generic object types and business rules that are required to capture the space system service model. This abstraction level includes all generic object types used to capture, by instantiation, the space system services resulting from the space system overall architecture.

The generic service type abstraction level specifies:

the service type, the subservice type and the capability type;

the subservice provider, the subservice user;

the message type, i.e.:

the request type and the instruction type,

the report type and the notification type;

the transaction type and its type-dependent definitions, i.e.:

for a request related transaction:

the request type,

the associated execution notification type, and

if some service data are generated in response to such a request, the related data report type;

for an autonomous data reporting transaction, the data report type;

for an event reporting transaction, the event report type.

The generic service deployment abstraction level specifies:

the system context of the service, in terms of the involved system objects of relevance to the service functionality, e.g. the space segment, the ground segment, the application process, the on-board parameter, the on-board memory;

the service, the subservice and the capability exposed by the subservice;

the message, i.e.:

the request, the instruction slot and the instruction,

the report, the notification slot and the notification;

the transaction.

[bookmark: _Toc447218021][bookmark: _Toc9958251]Convention

This Standard uses two types of identification mechanisms:

names for human communication, and

identifiers for communicating with the spacecraft.

Names and identifiers are always unique in a given context.

The wider context that is considered by this Standard is the (single) spacecraft. This means that, for this Standard, when a name or an identifier is declared as unique within a given context, that context is implicitly understood as a context within the spacecraft.

[bookmark: FM_AbstractionGenericServiceType][bookmark: _Toc447218022][bookmark: _Toc9958252]The generic service type abstraction level

[bookmark: _Toc9958253]General

Each service type shall be uniquely identified by exactly one service type name.

Each service type shall be uniquely identified by exactly one service type identifier that is an unsigned integer greater than or equal to 1, and less than or equal to 255.

The service type identifiers are used in the telemetry packet secondary header (refer to clause 7.4.3.1) and in the telecommand packet secondary header (refer to clause 7.4.4.1), together with a message subtype identifier to uniquely identify a message type.

Each standard service type shall have a service type identifier less than or equal to 127.

The standard service types are specified in the different versions of this Standard. When mission specific functionalities, identified by a mission specific service type, are considered adequate for being standardized, a new standard service type is created. When a standard service type is no longer considered adequate for remaining a standard, that service type is removed from the Standard; its service type identifier is not reused.

Each mission specific service type shall be associated with a service type identifier greater than or equal to 128.

[bookmark: FM_SubserviceType][bookmark: _Toc9958254]Subservice type

Each service type shall define at least one subservice type.

This Standard introduces the concept of subservices that group and isolate the functions of a service.

Each subservice type shall be defined by exactly one service type.

Each subservice type shall be uniquely identified by exactly one subservice type name.

For each subservice type, whether the realization of that subservice type is implicitly required for each realization of the service type or required by tailoring shall be declared when specifying that subservice type.

0. An example of a subservice type that is implicitly required is the "parameter monitoring" subservice type. Each realization of the "on-board monitoring" service type is implicitly required to include a realization of that subservice type, refer to requirement Error! Reference source not found. and clause Error! Reference source not found..

An example of a subservice type that is required by tailoring is the "functional monitoring subservice", refer to requirement Error! Reference source not found. and clause Error! Reference source not found..

For each subservice type, whether multiple realizations of that subservice type are allowed within a single service shall be declared when specifying that subservice type.

An example of a subservice type where multiple realizations are allowed within a single service is the "packet selection" subservice type, refer to requirement Error! Reference source not found. and clause Error! Reference source not found..

For each subservice type, the observables shall be declared when specifying that subservice type.

These observables are on-board parameters that are provided by the related subservice, refer for example to the observables of the parameter monitoring subservice in clause Error! Reference source not found..

[bookmark: _Ref424561682][bookmark: FM_MessageType][bookmark: _Toc9958255]Message type

General

Each message type shall be uniquely identified by exactly one message type name.

Each message type shall be uniquely identified by exactly one message type identifier.

These identifiers are used in the telemetry packet secondary header (refer to clause 7.4.3.1) and in the telecommand packet secondary header (refer to clause 7.4.4.1) to identify the type of messages transported by these packets but also in specific requests and reports, e.g. in the requests to add report types to the application process forwarding control table (refer to clause Error! Reference source not found.).

[bookmark: _Ref424204959]Each message type identifier shall be composed of:

the service type identifier of the service type that contains that message type;

a message subtype identifier that uniquely identifies that message type within that service type.

Each message subtype identifier shall be an unsigned integer greater than or equal to 1, and less than or equal to 255.

Each standard message type identifier shall have a message subtype identifier less than or equal to 127.

The standard message type identifiers are the identifiers specified in this Standard.

Each mission specific message type that belongs to a standard service type shall have a service subtype identifier greater than or equal to 128.

Each message type shall either be:

a request type, or

a report type.

For item 1, refer to clause 5.3.5.2.

For item 2, refer to clause 5.3.3.3.

[bookmark: FM_RequestType]Request type

Each request type shall define one or more instruction types.

0. An example of a request type that defines exactly one instruction type is the "modify parameter monitoring definitions" request type specified in clause Error! Reference source not found.. The single related instruction type is the "modify a parameter monitoring definition" instruction type specified in requirement Error! Reference source not found..

0. An example of a request type that defines more than one instruction type is the "report parameter monitoring definitions" request type specified in clause Error! Reference source not found.. The related instruction types are specified in requirement Error! Reference source not found., i.e.:

2. the "report a parameter monitoring definition" instruction type,

2. the "report all parameter monitoring definitions" instruction type.

0. The decision to link several instruction types to the same request type instead of having a request type for each instruction type is an operational issue. For example, if an instruction type acts on one instance of a system object and another instruction type on all instances of that system object, if the operational criticality of the "one" instruction differs from the operational criticality of the "all" instruction, this Standard recommends to define two request types.

Each instruction type shall be defined for exactly one request type.

Each instruction type shall be uniquely identified by exactly one instruction type name.

For each request type and for each instruction type of that request type, whether that request type provides a single instruction slot or multiple instruction slots for that instruction type shall be declared when specifying that request type.

For some instruction types, it make sense to allow multiple instructions in a request and, for others, it does not. Although an instruction type offers the possibility to have multiple instructions of that type inside a single request, that multiple instructions capability is a decision taken at request type level.

0. An example of an instruction type that offers the possibility to have multiple instructions inside a single request is the "report a parameter monitoring definition" instruction type specified in requirement Error! Reference source not found. for which the request to "report parameter monitoring definitions" defined in clause Error! Reference source not found. provide the capability to have multiple instructions inside a single request.

0. An example of an instruction type for which it does not make sense to allow multiple instructions in a request is the "report all parameter monitoring definition" instruction type also specified in requirement Error! Reference source not found..

For each request type that contains several instruction types, the allowed combinations of instruction types that can be used in a request of that request type shall be declared when specifying that request type.

An allowed combination of instruction types means that the realizations of two or more of those instruction types can be merged in a single request of the corresponding request type, see for example the add report types to the application process storage-control configuration specified in clause Error! Reference source not found..

For each instruction type, the instruction arguments used by that instruction type, their definition and their ordering within the instruction type shall be declared when specifying that instruction type.

[bookmark: _Ref438454877]For each request type that provides multiple instruction slots, if that request type constrains the scope of the instructions that can be issued within a request of that type, the argument or set of arguments of the related instruction types that define that scope shall be grouped together in the definition of the request type.

This requirement avoids constructing and issuing a request with multiple times the same instruction argument value or set of argument values. For example, the request type to time-shift scheduled activities identified by request identifier has a time-offset argument that precedes the instruction slots. That time offset applies to each instruction in the request (as specified in clause Error! Reference source not found.).

For each request type, the definition of the request arguments provided by that request type, their definition and their ordering within the request type shall be declared when specifying that request type.

A request type argument can be an instruction type argument (or set of instruction type arguments) as specified in requirement 5.3.3.2g, or a directive argument (or set of directive arguments) specifying, for example,

an on-board condition to allow executing the instructions of the requests of that type,

a mode to set (e.g. the configuration execution flag of the request to apply parameter functional reporting configurations, refer to clause 6.1.5.2).

[bookmark: FM_ReportType]Report type

Each report type shall either be:

a data report type,

a verification report type, or

an event report type.

0. For item 1, an example of a data report type is the housekeeping parameter report type specified in clause 6.1.3.9.

For item 2:

the verification report types are those specified in clause Error! Reference source not found., i.e. the request verification service type.

the verification reports are used in the request related transactions, refer to clause 5.3.5.2.

For item 3, the event report types are those specified in clause Error! Reference source not found., see also clause 5.3.5.4.

[bookmark: _Ref383446434]Each report type shall define exactly one notification type.

If a report type is associated to a request related transaction type (i.e. that report type is a response type) and associated to an autonomous data reporting transaction type (i.e. that report type is also an autonomous data report type), the same notification type is used for both transaction types.

Each notification type shall be defined for exactly one report type.

Each notification type shall be uniquely identified by exactly one notification type name.

For each report type and for each notification type of that report type, whether that report type provides a single notification slot or multiple notification slots for that notification type shall be declared when specifying that report type.

For some notification types, it makes sense to allow multiple notifications in a report. For others, it does not. Although a notification type offers the possibility to have multiple notifications of that type inside a single report, that multiple notifications capability is a decision taken at report type level.

An example of a notification type that offers the possibility to have multiple notifications inside a single report but for which it is explicitly required to have only one notification per report is the housekeeping parameter report structure report specified in clause 6.1.3.7.

[bookmark: FM_CapabilityType][bookmark: _Toc9958256]Capability type

Each subservice type shall define at least one capability type.

Each capability type defines one or more interrelated functions of the subservice type. A capability type can represent:

a single function, e.g. for "the capability to distribute on/off device commands" specified in clause Error! Reference source not found.;

a set of two or more exclusive-or related functions, e.g. for the exclusive-or constraint to use either the CUC format or the CSD format (but not both) when reporting the on-board time, refer to requirement Error! Reference source not found.;

a set of two or more inclusive-or related functions, e.g. for the inclusive-or constraint to provide at least one means to load OBCPs, refer to requirement Error! Reference source not found.;

a set of interrelated functions, e.g. for the capability to enable and disable the scrubbing of a memory specified in clause Error! Reference source not found. and Error! Reference source not found. whereas the decision to provide the capability to enable the scrubbing of a memory implies to provide the capability to disable the scrubbing of a memory (refer to requirement Error! Reference source not found.).

[bookmark: FM_CapabilityTypeApplicabilityConstraint]For each capability type defined by a subservice type, the applicability constraints of that capability type shall be declared when specifying that subservice type.

The applicability constraint of each standardized capability type is specified in clause 6 (see also Annex C). For example:

4. a "minimum" applicability constraint means that each related subservice provides that capability (see for example Error! Reference source not found.);

4. a "by declaration" applicability constraint means that for each related subservice, whether that capability is provided by that subservice is a decision to take when specifying that subservice (See for example requirement Error! Reference source not found.);

4. an "implied by another capability type" applicability constraint means that if a subservice provides that other capability then that subservice also provides that implied capability (see for example requirement Error! Reference source not found.);

4. a "by declaration and only if another capability type is provided" applicability constraint means that the decision to include that capability depends on the decision taken for that subservice to provide that other capability (see for example requirement Error! Reference source not found. and the associated note).

3. Applicability constraints can also be defined for a set of capability types. For example:

4. an exclusive-or applicability constraint means that a subservice can provide at most one of the related capabilities (see for example requirement Error! Reference source not found.);

4. an inclusive-or applicability constraint means that a subservice provides at least one of the related capabilities (see for example requirement Error! Reference source not found.).

[bookmark: FM_TransactionType][bookmark: _Toc9958257]Transaction type

General

Each transaction type shall be defined by exactly one capability type.

Each transaction type shall either be:

a request related transaction type,

an autonomous data reporting transaction type, or

an event reporting transaction type.

0. For item 1, refer to clause 5.3.5.2.

0. For item 2, refer to clause 5.3.5.3.

0. For item 3, refer to clause 5.3.5.4.

[bookmark: _Ref379457394][bookmark: FM_RequestRelatedTransactionType]Request related transaction type

General

Each request related transaction type shall involve exactly one request type.

The verification report types introduced in clause 5.3.3.3 are involved in the request related transaction types as a consequence of the execution verification profile specified in clause 5.3.5.2.3.

Each request type shall be involved in exactly one request related transaction type.

[bookmark: FM_SynchronouslyLinkedDataReportType]Response type

Each request type shall be linked to at most one data report type.

0. An example of a request type that is linked to a data report type is the "report parameter monitoring definitions" request type. The linked data report type, playing the role of the response type, is the "parameter monitoring definition report", refer to requirement Error! Reference source not found..

As stated in requirement 5.3.3.3b, each data report type defines exactly one notification type. The link that exists between a request type and a report type implies that each instruction type defined by that request type is linked to the notification type defined by that report type.

For each instruction type that is linked to a notification type, whether a realization of that instruction type can cause the generation of multiple notifications shall be declared when specifying that instruction type.

0. An example of an instruction type whose realization can cause the generation of multiple notifications is the "report all parameter monitoring definitions" instruction type, refer to requirement Error! Reference source not found..

0. An example of an instruction type whose realization causes the generation of a single notification is the "report a parameter monitoring definition" instruction type, refer to requirement Error! Reference source not found..

[bookmark: FM_ReqExecutionVerificationProfile]Execution verification profile

For each request type, the pre-conditions to verify prior to starting the execution of each request of that type shall be declared when specifying that request type.

0. An example of such a request-type-specific pre-conditions is the existence of the parameter functional reporting definition indicated by the argument of the "add parameter report definitions to a parameter functional reporting definition" request type, refer to requirement Error! Reference source not found..

This Standard does not list the checks to perform to avoid the execution of a request that has no effect if the absence of such check causes no operational ambiguity. It is for the mission to decide if and where to perform the checks, i.e. on-board or on-ground

For each instruction type, the pre-conditions to verify prior to starting the execution of each instruction of that type shall be declared when specifying that instruction type.

An example of such instruction-specific pre-conditions is the existence within the parameter functional reporting definition of the parameter report definition indicated by the instruction-specific argument of the instruction to "add a parameter report definition to a parameter functional reporting definition", refer to requirement Error! Reference source not found..

For each request type that provides a multiple instruction slots capability, whether the subservice verifies the suitability of all instructions contained within each request of that type before authorizing the start of execution of that request shall be declared when specifying that request type.

0. This Standard applies the operational concept that verifying on-board the suitability of all instructions before authorizing the start of execution of a request implies the failure of that start of execution if not all instructions are suitable for execution.

0. An example of a request type whose realizations can only be executed if all their instructions are suitable for execution is the request to "load raw memory data areas", refer to requirement Error! Reference source not found..

An example of a request type whose realizations can be executed without ensuring that all their instructions are suitable for execution is the request to "enable parameter monitoring definitions", refer to requirement Error! Reference source not found.. The instructions contained within such a request are by nature independent.

For each instruction type, the conditions to verify during the execution of each instruction of that type shall be declared when specifying that instruction type.

For each instruction type, the post-conditions to verify at the end of the execution of each instruction of that type shall be declared when specifying that instruction type.

For each request type, the post-conditions to verify at the end of the execution of each request of that type shall be declared when specifying that request type.

[bookmark: FM_RequestExecVerificationProfile]For each request type, the execution verification profile used to report the start, progress and completion of execution of each request of that type shall be declared when specifying that request type.

The execution verification profile can include any of the following:

for each request-specific successful start of execution condition to notify, a code value that refers to that condition;

for each request-specific failed start of execution condition to notify, a failure notice made of a code value that refers to that condition together with any number of associated parameters whose values are reported to support the processing of that failed execution notification;

for each instruction-specific successful start of execution condition to notify, a code value that refers to that condition;

for each instruction-specific failed start of execution condition to notify, a failure notice made of a code value that refers to that condition together with any number of associated parameters whose values are reported to support the processing of that failed execution notification;

for each instruction-specific successful progress of execution condition to notify, a code value that refers to that condition;

for each instruction-specific failed progress of execution condition to notify, a failure notice made of a code value that refers to that condition together with any number of associated parameters whose values are reported to support the processing of that failed execution notification;

for each instruction-specific successful completion of execution condition to notify, a code value that refers to that condition;

for each instruction-specific failed completion of execution condition to notify, a failure notice made of a code value that refers to that condition together with any number of associated parameters whose values are reported to support the processing of that failed execution notification;

for each request-specific successful completion of execution condition to notify, a code value that refers to that condition;

for each request-specific failed completion of execution condition to notify, a failure notice made of a code value that refers to that condition together with any number of associated parameters whose values are reported to support the processing of that failed execution notification.

Each progress of execution notification shall provide the means to uniquely identify the instruction that progress of execution is notified.

This identification is used by the subservice user that has initiated the execution of that instruction.

For each instruction type, the functionality that the subservice performs when executing an instruction of that type shall be declared when specifying that instruction type.

An example of such subservice functionality can be found in Error! Reference source not found..

For each request type, the request-specific functionality that the subservice performs when executing a request of that type shall be declared when specifying that request type.

[bookmark: _Ref379457418][bookmark: FM_AsyncDataReportRelatedTransactionType]Autonomous data reporting transaction type

Each autonomous data reporting transaction type shall involve exactly one data report type.

Examples of autonomous data report types are:

13. the housekeeping parameter report type (refer to clause 6.1.3.9),

13. the diagnostic parameter report type (refer to clause 6.1.4.9),

13. the check transition report type (refer to clause Error! Reference source not found.).

It is noted that some data reports can be generated autonomously but also in response to specific requests. This is for example the case of the housekeeping parameter reports that can be generated periodically according to a collection interval (refer to requirement Error! Reference source not found.), but are also generated as the response of a request to generate a one shot report for housekeeping parameter report structures (refer to clause 6.1.3.9).

Each data report type shall be involved in at most one autonomous data reporting transaction type.

[bookmark: _Ref379457436][bookmark: FM_EventReportRelatedTransactionType]Event reporting transaction type

Each event reporting transaction type shall involve exactly one event report type.

This Standard defines four types of event reports according to the severity level of their associated events:

13. the informative event report type,

13. the low severity event report type,

13. the medium severity event report type, and

13. the high severity event report type.

The message subtype identifier gives the severity level of the event report types, refer to clause Error! Reference source not found.. For example, all event reports for low severity events have the same message type. i.e. the same combination of service type identifier and message subtype identifier. There is no means, at event report type level, to identify the event that is associated to the related event reports. For that event association, this Standard defines the concept of event definitions. Each event definition is associated to a single event and a single event report type. Each event definition is uniquely identified by the combination of the application process that generates the corresponding event reports and an event definition identifier that is unique within the context of that application process (refer to clause Error! Reference source not found.).

Each event report type shall be involved in exactly one event reporting transaction type.

[bookmark: _Toc9958258]Tailoring the generic service type abstraction level

Tailoring the generic service type abstraction level shall consist of:

adding mission-specific service types;

adding mission-specific subservice types;

adding mission-specific capability types;

adding mission-specific message types.

Reducing the standardized functional capabilities offered by the generic service type abstraction level (i.e. clause 5.3) is not recommended since it can negatively affect the reuse of existing elements (hardware or software).

[bookmark: FM_AbstractionGenericServiceDeployment][bookmark: _Toc447218023][bookmark: _Toc9958259]The generic service deployment abstraction level

[bookmark: _Toc9958260]Introduction

The services are functional entities that involve both ground elements and on-board elements.

A service is composed of one or more subservices. Each subservice involves:

one or more subservice users, each one hosted by an application process that resides on-ground or on-board, and

exactly one subservice provider that is usually hosted by an on-board application process.

The communication between the subservice entities (i.e. a subservice user and a subservice provider) consists of exchanging messages between these entities. When messages are exchanged between the ground segment and the space segment, these messages are transported in CCSDS packets as specified in clause 7.

[bookmark: FM_ApplicationProcess][bookmark: _Toc9958261]Application process

General

Each application process shall either be:

an on-board application process, or

a ground application process.

[bookmark: FM_ApplicationProcessIdentifier]Each application process that hosts at least one subservice provider shall be identified by an application process identifier that is unique across the system that hosts that subservice provider.

This Standard acknowledges that the same application process identifier can be used to identify several application processes. This is for example the case during the space system development where different representations of a given application process are used, e.g. a simulated version of an application process used for testing the ground segment but also during operations, e.g. in case of cold redundancy.

The system introduced in this requirement can be, for example, the spacecraft that hosts the on-board application process. The concept of system identifier is also used in this Standard to uniquely identify that system across the overall space system. This Standard does not further elaborate on this system concept and its identifier.

Each application process identifier shall be an unsigned integer that is less than or equal to 2046.

0. This application process identifier is used to identify the on-board application process that is the destination for a request and the source for a report.

The APID 2047 is reserved for idle packets. The APID 0 is reserved for spacecraft time packets. Other APID values are reserved, refer to the space assigned numbers authority registry (see bibliography).

[bookmark: FM_ApplicationProcessUserIdentifier]Each application process that hosts at least one subservice user shall be identified by an application process user identifier that is unique within the context of the overall space system.

0. The subservice users are in charge of issuing requests and processing reports. As such, an application process that can only receive reports also has an application process user identifier.

0. The application process user identifier is used:

as "source identifier" for any request generated by that application process (see also the source ID field of the telecommand packet secondary header specified in requirement 7.4.4.1b), and

as "destination identifier" for any report whose final destination is that application process (see also the destination ID field of the telemetry packet secondary header specified in requirement 7.4.3.1b).

This Standard acknowledges that the same application process user identifier can be used to identify several application processes, e.g. in case of cold redundancy.

Each application process user identifier shall be an unsigned integer that is greater than or equal to 0, and less than or equal to 65535.

[bookmark: FM_ReportTimeStamp]For each report that it generates, each on-board application process shall time tag that report using the on-board reference time.

[bookmark: FM_AP_TimeTagging]For each application process, whether that application process time tags the reports before collecting the values of the constituting parameters or after shall be declared when specifying that application process.

When a report contains parameter values acquired at different times (e.g. housekeeping reports with multiple samples of the same parameter), the acquisition time of each set of parameter values can be deduced from the time tag of the report.

[bookmark: FM_AP_TimeStatusReporting]For each application process, whether that application process provides the capability to report the status of the on-board time reference used when time tagging reports shall be declared when specifying that application process.

For each application process, whether that application process provides the capability to count the type of generated messages per destination and report the corresponding message type counter shall be declared when specifying that application process.

[bookmark: _Ref424572993]Each application process that provides the capability to count the type of generated messages per destination and report the corresponding message type counter shall maintain, per destination, a counter for each message type that it generates.

[bookmark: FM_InterfacedSystemObjects][bookmark: _Toc9958262]Interfaced system objects

Introduction

Each service interacts with objects of the overall space system. These system objects are either:

defined within the scope of a service, or

defined externally, e.g. an on-board memory that is defined at spacecraft level and used by several services.

The system objects that are defined within the scope of a service are maintained by that service and their visibility is often limited to that service. They expose properties that are used by the service to perform its functionality.

The system objects that are externally defined have their own existence independently of any service. They expose properties that are accessed by some services for the purpose of e.g. performing the service functionality, monitoring and controlling those system objects.

The system objects introduced in this Standard are:

the on-board parameters, refer to clause 5.4.3.2;

the on-board memories, refer to clause 5.4.3.3;

the virtual channels, refer to clause 5.4.3.4;

the on-off devices, refer to clause Error! Reference source not found.;

the registries, refer to clause Error! Reference source not found.;

the CPDUs, refer to clause Error! Reference source not found. and clause 9;

the physical and the logical devices, refer to clause Error! Reference source not found. and clause Error! Reference source not found.;

the housekeeping parameter report structures, refer to clause Error! Reference source not found.;

the diagnostic parameter report structures, refer to clause Error! Reference source not found.;

the parameter functional reporting definitions, refer to clause Error! Reference source not found.;

the event definitions, refer to clause Error! Reference source not found.;

the functions, refer to clause Error! Reference source not found.;

the time-based sub-schedules, refer to clause Error! Reference source not found.;

the time-based scheduling groups, refer to clause Error! Reference source not found.;

the parameter monitoring definitions, refer to clause Error! Reference source not found.;

the functional monitoring definitions, refer to clause Error! Reference source not found.;

the packet stores, refer to clause Error! Reference source not found.;

the on-board control procedures, refer to clause Error! Reference source not found.;

the request sequences, refer to clause Error! Reference source not found.;

the position-based sub-schedules, refer to clause Error! Reference source not found.;

the position-based scheduling groups, refer to clause Error! Reference source not found.;

the on-board file systems, refer to clause 5.4.5.

[bookmark: FM_OnboardParameter]On-board parameter

Each on-board parameter shall be identified by exactly one on-board parameter identifier that is unique across the entire spacecraft.

0. An on-board parameter represents e.g. a measurement taken from an on-board sensor or a software parameter held in memory.

A service may need to acquire a reading of an on-board parameter for the purposes of its routine activity (for example, to monitor its value, to use its value to determine the validity of another on-board parameter, to use its value in a calculation etc.).

The "baseline" set of on-board parameters is defined during the spacecraft design process. However, the flexibility can also exist to define new parameters in orbit or to change the definition of an existing on-board parameter or to set the value of an on-board parameter (refer to clause Error! Reference source not found.). This capability is of course restricted to software parameters held in on-board memory and the on-board software design can additionally have built-in protections to ensure against the overwriting of essential on-board parameters.

The set of on-board parameter minimum sampling intervals used to access the on-board parameters shall be declared when specifying the spacecraft architecture.

This Standard foresees that different spacecraft subsystems may use different on-board parameter minimum sampling intervals, e.g. the platform uses a parameter minimum sampling interval of 125 ms but the payload uses an interval of 500 ms.

[bookmark: _Ref377537901][bookmark: FM_OnboardParameterMinimumSamplingInterv]Each on-board parameter shall be associated to exactly one on-board parameter minimum sampling interval.

0. This on-board parameter minimum sampling interval is used as the unit for expressing time intervals used by the subservices that access the on-board parameters, for example, the housekeeping or monitoring services. refer also to requirement Error! Reference source not found..

0. This requirement does not imply that for each on-board parameter, one can associate an on-board parameter minimum sampling interval but that such an interval is associated to a group of parameters, e.g. all parameters of a platform, all parameters of a payload.

All on-board parameters accessed by an application process shall be associated to the same on-board parameter minimum sampling interval.

[bookmark: _Ref383508498][bookmark: FM_OnboardMemory]On-board memory

General

Each on-board memory shall be identified by exactly one on-board memory identifier.

0. The on-board memory concept introduced in this Standard is for logical memories, i.e. any logical memory space, potentially managed by different on-board processors. The mapping with physical memories is out of the scope of this Standard.

Each physical memory is associated to a memory smallest addressable unit that specifies the minimum number of bytes that can be addressed. Each logical memory, identified by the memory identifier, is associated to a memory access alignment constraint that specifies the minimum number of bytes used by the services to address the corresponding physical memory.

This Standard does not preclude that the same memory identifier is used by several on-board memories provided that they cannot be accessed at the same time, e.g. in the case of memory cold redundancy.

Access to a given memory can be by either absolute addressing or relative addressing. For relative addressing, a base address (either an explicit address or a symbolic address, such as a table name) and an offset from this base address are specified.

At any time, each on-board memory identifier shall uniquely identify exactly one on-board memory that is unique across the entire spacecraft.

[bookmark: SO_MemoryCharacteristics]For each on-board memory, the following characteristics of that memory shall be declared when specifying that memory:

[bookmark: _Ref359250758]the memory access alignment constraint;

the memory size, in bytes;

the allowed operations;

the addressing scheme.

For item 4, refer to clause 5.4.3.3.2.

When declaring the characteristics of an on-board memory, the allowed operations shall be one of the following:

"read only";

"read and write";

"write only".

[bookmark: SO_MemoryScrubbing]For each on-board memory, whether scrubbing that memory is supported shall be declared when specifying that memory.

[bookmark: SO_MemoryWriteProtecting]For each on-board memory, whether write protecting that memory is supported shall be declared when specifying that memory.

[bookmark: _Ref428438435]Addressing scheme

[bookmark: SO_MemoryAbsoluteAddressingScheme]For each on-board memory, whether an absolute addressing scheme for that memory is exposed in the space to ground interface shall be declared when specifying that memory.

Absolute addressing implies that the memory addresses and related offsets shall be expressed in bytes.

[bookmark: SO_MemoryBaseAddressingScheme]For each on-board memory, whether a base plus offset addressing scheme for that memory is exposed in the space to ground interface shall be declared when specifying that memory.

Base plus offset addressing means that the memory addresses are byte offsets from a base reference. A base reference gives (explicitly or implicitly) the address within the memory which is used as the byte-zero reference for the offset. The base reference can itself be an absolute address or a symbolic address e.g. the name of a table, a parameter set or a file whose absolute address is implicitly known on-board.

Base plus offset addressing implies that the base references when expressed as an absolute address and related offsets shall be expressed in bytes.

Base plus offset addressing implies that the byte offsets are offsets from the first byte of the referenced area within the object referenced by the base independently of the actual physical storage within the memory used to store the related data.

[bookmark: FM_VirtualChannel]Virtual channel

[bookmark: SO_VCDownlink]The list of virtual channels defined for downlinking reports and their characteristics shall be declared when specifying the space to ground interface.

For the virtual channel, refer to ECSS-E-ST-50-03. See also clause 7.1.2.2.

[bookmark: SO_VCDownlinkID]For each virtual channel defined for downlinking reports, the virtual channel identifier used to refer to that virtual channel shall be declared when specifying that virtual channel.

[bookmark: FM_ChecksumAlgorithm][bookmark: _Toc9958263]Checksum algorithm

For each checksum algorithm used on-board, the list of subservice providers that use that checksum algorithm shall be declared when specifying the spacecraft architecture.

This requirement is justified by the system need to ensure that all subservice providers that provide means to checksum a specific data object use the same checksum algorithm. For example, if a file contains an OBCP that can be checksummed by the OBCP service and that file is also managed by a memory service, the same checksum algorithm is used by both services.

The checksum algorithm implies the type of checksum i.e. ISO or CRC, and the size of the checksum.

The checksum algorithm to use to checksum all telemetry packets and the checksum algorithm to use for all telecommand packets are specified in requirements 7.4.3.2e and 7.4.4.2d.

[bookmark: FM_OnboardFileSystem][bookmark: _Toc9958264]On-board file system

Each on-board file system shall be identified by exactly one on-board file system identifier that is unique across the entire spacecraft.

For the on-board file system, refer also to clause Error! Reference source not found..

Each object in an on-board file system shall be uniquely identified by an object path that is the combination of a repository path and an object name.

The term object refers to a file or to a directory.

[bookmark: FM_FileSystemUnboundedFileSize]For each on-board file system, whether that file system supports files with unbounded size shall be declared when specifying that file system.

A file of unbounded size means that the file is only limited by the actual available physical memory size.

[bookmark: FM_OnboardFileSystem_FileAttributes]The set of file attributes supported by each on-board file system shall be declared when specifying that file system.

For example, the file type, its creation date.

[bookmark: FM_OnboardFileSystem_Locking]For each on-board file system, whether that file system provides the capability to lock files shall be declared when specifying file system.

An on-board file system shall not be accessed by more than one file management service.

[bookmark: FM_Service][bookmark: _Toc9958265]Service

Each service shall be of exactly one service type.

For each subservice type whose realization is implicitly required, each service of the related service type shall provide at least one subservice of that subservice type.

An example of a subservice type whose realization is implicitly required is the parameter monitoring subservice type of the on-board monitoring service type, refer to requirement Error! Reference source not found..

For each subservice type whose realization is required by tailoring and for each service of the service type that defines that subservice type, whether the realization of that subservice type is required for that service shall be declared when specifying that service.

An example of a subservice type whose realization is required by tailoring is the functional monitoring subservice type of the on-board monitoring service type, refer to requirement Error! Reference source not found..

For each subservice type that allows multiple realizations within a single service, each realization of that subservice type shall be declared when specifying that service.

An example of a subservice type that allows multiple realizations within a single service is the packet selection subservice type of the on-board storage and retrieval service type, refer to requirement Error! Reference source not found..

The service topology of the overall space system shall be declared when specifying the space system architecture.

The service topology includes:

the list of subservices provided by each service,

the on-board service topology, i.e. for each service, the subservice provider of each related subservice and the on-board subservice users, if any, of each subservice, and

the ground service topology, i.e. for each service, the subservice users of each related subservice.

[bookmark: FM_Subservice][bookmark: _Toc9958266]Subservice

General

Each subservice shall be of exactly one subservice type.

Each subservice shall belong to exactly one service.

The type of a subservice is one of the subservice types defined for the related service type.

[bookmark: FM_SubserviceEntity]Subservice entity

General

Each subservice entity shall belong to exactly one subservice.

Each subservice entity shall be hosted by exactly one application process.

Each subservice entity shall be either a subservice user or a subservice provider.

A subservice entity is identified by the subservice that it belongs to and the application process that hosts it.

[bookmark: FM_SubserviceProvider]Subservice provider

Each subservice shall provide exactly one subservice provider.

A subservice provider is an operational element of a subservice that is in charge of execution of the subservice requests and generation of the subservice reports. The subservice providers are usually hosted by the on-board application processes.

[bookmark: FM_SubserviceUser]Subservice user

Each subservice shall provide at least one subservice user.

A subservice user is an operational element of a subservice that is in charge of initiating the subservice requests and processing the subservice reports. The subservice users are either hosted by the ground application processes or the on-board application processes.

[bookmark: FM_Capability][bookmark: _Toc9958267]Capability

Each subservice shall provide at least one subservice capability.

For each subservice and for each capability type defined by the corresponding subservice type, the inclusion of the related capability in that subservice shall comply with the applicability constraints of that capability type.

For the applicability constraints of a capability type, refer to requirement 5.3.4b.

[bookmark: _Toc9958268]Failed progress of execution

[bookmark: FM_ReqFailedProgressNotificationPolicy]For each request type for which a failed progress of execution can be reported, whether the corresponding failed progress of execution notifications are reported within failed progress of execution verification reports or as part of the completion of execution verification report for the related requests shall be declared when specifying the request type related subservice.

This requirement also applies to the standardized request types specified in clause 6 that do not specify the related failed progress of execution notifications reporting policy.

[bookmark: FM_Transaction][bookmark: _Toc9958269]Transaction

Each subservice shall provide the means to manage all transactions that it initiates according to the mission operational requirements.

A transaction is either:

a request related transaction,

an autonomous data reporting transaction, or

an event reporting transaction.

Each transaction shall be initiated and maintained by exactly one subservice.

Each transaction involves one or more messages exchanged between a subservice user and a subservice provider.

A request related transaction involves:

a request,

depending on the acknowledgement specified for that request (refer to clause 5.4.11.2.2) and the execution verifications of that request (refer to clause 5.4.11.2.3), zero or more verification reports,

depending on the successful execution of the instructions contained within that request, if that request type is linked to a response type, one or more responses (refer to clause 5.3.5.2).

An autonomous data reporting transaction involves an autonomous data report.

An event reporting transaction involves an event report.

[bookmark: FM_Message][bookmark: _Toc9958270]Message

General

Each message shall be of a single message type.

The message type is specified in clause 5.3.3. A message is either a request or a report.

[bookmark: FM_Request]Request

General

Each request shall be generated by exactly one subservice user.

By convention, a request is said to be generated by the application process that hosts the subservice user that generates that request.

If the application process that generates the request is a ground application process, by convention, the request is also said to be generated by

the monitoring and control system that hosts that application process,

the ground segment.

Each request shall be addressed to exactly one subservice provider.

[bookmark: FM_RequestIdentifier]Each request shall be uniquely identified by a request identifier that is the combination of:

a source identifier that corresponds to the application process user identifier of the application process that hosts the subservice user that generates that request;

a destination identifier that corresponds to the combination of the application process identifier of the application process that hosts the subservice provider that is responsible for executing that request and the system identifier of the system that hosts that application process;

a sequence count or request name that is produced by the application process that hosts the subservice user.

0. This Standard assumes that the request identifier is unique for the mission duration but does not further elaborate on how this uniqueness is achieved. In reality, it can happen that the same identifier is used for several requests, e.g. during tests or when the sequence count counter wraps around, implying the need to include timing information to ensure the uniqueness of request identification for the overall mission duration.

0. For item 1, refer to requirement 5.4.2.1d.

0. For item 2, refer to requirement 5.4.2.1b.

0. When a request is transported within a CCSDS telecommand packet, refer to clause 7.4:

the application process identifier of the destination identifier is set in the application process identifier field of the packet identification field of the packet primary header field;

the sequence count or request name is set in the packet sequence count or packet name field of the packet sequence control field of the packet primary header field;

the source identifier is set in the source identifier field of the packet secondary header field.

Each request shall be of exactly one request type.

Each request whose request type provides a single instruction slot shall contain exactly one instruction that is of an instruction type defined for that request type.

Each request whose request type provides multiple instruction slots shall contain an ordered list of one or more instructions, each one being of an instruction type defined for that request type.

For example, the request to "enable event-action definitions" can include either a single instruction to "enable all event-action definitions" or one or more instructions to "enable an event-action definition", refer to requirement Error! Reference source not found..

[bookmark: FM_Acknowledgement]Acknowledgement

Each request shall contain:

[bookmark: FM_ReqACKSuccessfulAcceptance]a flag indicating whether the reporting of the successful acceptance of that request by the destination application process is requested;

[bookmark: FM_ReqACKSuccessfulStart]a flag indicating whether the reporting of the successful start of execution of that request by the destination application process is requested;

[bookmark: FM_ReqACKSuccessfulProgress]a flag indicating whether the reporting of the successful progresses of execution of that request by the destination application process is requested;

[bookmark: FM_ReqACKSuccessfulCompletion]a flag indicating whether the reporting of the successful completion of execution of that request by the destination application process is requested.

0. Related to item 1:

25. each successful acceptance is only reported if that flag indicates such reporting need, refer to requirement Error! Reference source not found.;

25. each failed acceptance is reported by the destination application process, refer to requirement Error! Reference source not found..

0. For item 2:

26. each successful start of execution is only reported if the item 2 flag indicates the reporting need, refer also to requirements 5.4.11.2.3a.2 and Error! Reference source not found.;

26. each failed start of execution is notified by the subservice provider in charge of executing that request and reported by the destination application process that hosts that subservice provider, refer to requirements 5.4.11.2.3a.1 and Error! Reference source not found..

0. For item 3:

27. each successful progress of execution is only reported if the item 3 flag indicates the reporting need, refer also to requirements 5.4.11.2.3a.3(c) and Error! Reference source not found.;

27. each failed progress of execution is notified by the subservice provider in charge of executing that request, refer to requirement 5.4.11.2.3a.3(b);

27. depending on the subservice provider's request type related failed progress of execution notifications reporting policy (refer to requirement 5.4.9a), the failed progress of execution notifications are reported by the destination application process that hosts that subservice provider within failed progress of execution verification reports (refer to requirement Error! Reference source not found.) or as part of the completion of execution verification report for the related request (refer to requirement Error! Reference source not found.).

0. For item 4:

28. each successful acceptance is only reported if the item 4 flag indicates the reporting need, refer also to requirements 5.4.11.2.3a.4(c) and Error! Reference source not found..;

28. each failed completion of execution is notified by the subservice provider in charge of executing that request and reported by the destination application process that hosts that subservice provider, refer to requirements Error! Reference source not found. and Error! Reference source not found..

[bookmark: FM_RequestExecutionVerification]Request execution verification

For each request that it receives, the subservice provider in charge of the execution of that request shall, in sequence:

[bookmark: FM_ReqFailedStartNotification]if the pre-conditions for the execution of that request are not fulfilled:

notify the execution reporting subservice of its parent application process of the failed start of execution;

stop processing that request;

[bookmark: FM_ReqSuccessStartNotification]if the pre-conditions for the execution of that request are fulfilled, notify the execution reporting subservice of its parent application process of the successful start of execution;

for each step, if any:

verify the execution conditions of that step, if any;

[bookmark: FM_ReqFailedProgressNotification]if the execution conditions of that step are not fulfilled, notify the execution reporting subservice of its parent application process of the failed progress of execution of that step;

[bookmark: FM_ReqSuccessProgressNotification]if the step's execution conditions are fulfilled, notify the execution reporting subservice of its parent application process of the successful progress of execution of that step;

at the end of the execution of that request:

verify the post-conditions of execution, if any;

if any step execution has failed or if the post-conditions of execution are not fulfilled, notify the execution reporting subservice of its parent application process of the failed completion of execution and stop processing that request;

[bookmark: FM_ReqSuccessCompletionNotification]if the post-conditions of execution are fulfilled, notify the execution reporting subservice of its parent application process of the successful completion of execution;

A successful completion of execution notification means only that the subservice provider has checked all post-conditions defined in the execution verification profile of that request. It does not necessarily mean that the request execution is successful. That meaning depends on the execution verification profile.

[bookmark: FM_Report]Report

General

Each report shall be generated by exactly one subservice provider.

By convention, a report is said to be generated by the application process that hosts the subservice provider that generates the report.

Each report shall be addressed to exactly one subservice user.

The subservice user addressed by this requirement is the final destination. This Standard does not address e.g.:

the possibility for a report to be forwarded via different paths to its final destination,

in case e.g. of event reports, the possibility to dispatch the report on-board,

the possibility for having more than one ground application processing the report.

Each report shall be uniquely identified by a report identifier that is the combination of:

a source identifier that is the application process identifier of the application process that hosts the subservice provider that generates that report;

a destination identifier that corresponds to the application process user identifier of the application process that hosts the subservice user that is responsible for processing that report;

a source sequence count that is produced by the application process that hosts the subservice provider.

0. This Standard assumes that the report identifier is unique for the mission duration but does not further elaborate on how this uniqueness is achieved. In reality, it can happen that the same identifier is used for several requests, e.g. during tests or when the sequence count counter wraps around, implying, for example, the need to include timing information to ensure the uniqueness of report identification for the overall mission duration.

When a report is transported within a CCSDS telemetry packet, refer to clause 7.4:

the source identifier is set in the application process identifier field of the packet identification field of the packet primary header field;

the sequence count is set in the packet sequence count or packet name field of the packet sequence control field of the packet primary header field;

the destination identifier is set in the destination identifier field of the packet secondary header field.

For item 2, refer to requirement 5.4.2.1d.

Each report shall be of exactly one report type.

Each report whose report type provides a single notification slot shall contain exactly one notification that is of a notification type defined for that report type.

Each report whose report type provides multiple notification slots shall contain an ordered list of one or more notifications, where:

all notifications in the list are of the same notification type, and

that notification type is one of those defined for that report type.

Response

The destination of any response shall be the source of the corresponding request.

[bookmark: _Ref421527423]If a request implies the generation of a response that exceeds the length that can be carried in a telemetry packet of the maximum packet size of the CCSDS space packet protocol, that request shall be rejected.

0. The maximum packet size of the CCSDS space packet protocol is 65542 bytes.

This Standard foresees that the file management service is used to uplink or downlink data larger than the maximum packet size of the CCSDS space packet protocol. Other mechanisms to cover such large data transfer are mission-specific.

[bookmark: FM_DataReport]Data report

For each data report that can be generated in an autonomous data reporting transaction, the destination of the data report in that case shall be declared when specifying the related subservice.

[bookmark: _Toc9958271]Building the space system architecture

Deploying the service topology of an overall space system should consist of:

specifying new implementations of PUS services by instantiating the service types and related components;

assessing the adequacy of reusing existing service implementations:

ensuring their compliance to the PUS standard services;

verifying their compliance to the overall system constraints.

[bookmark: ST_SystemRequirements][bookmark: _Ref435698553][bookmark: _Toc447218024][bookmark: _Toc9958272]
Service type system requirements

[bookmark: ST003][bookmark: _Toc9958273]ST[03] housekeeping

[bookmark: _Toc9958274]Scope

General

The housekeeping service type provides means to control and adapt the spacecraft reporting plan according to the mission phases.

The housekeeping service type provides the visibility of any on-board parameters assembled in housekeeping parameter report structures or diagnostic parameter report structures as required for the mission. The parameter report structures used by the housekeeping service can be predefined on-board or created when needed.

The housekeeping service type defines three standardized subservice types, i.e.:

the housekeeping reporting subservice type,

the diagnostic reporting subservice type,

the parameter functional reporting configuration subservice type.

It also defines a non-standard subservice type:

the compression of housekeeping telemetry parameters report.

Housekeeping reporting and diagnostic reporting subservices

The housekeeping and the diagnostic reporting subservice types provide similar functions respectively:

dedicated to nominal operations, for the housekeeping reporting, and

dedicated to contingency operations for diagnostic reporting.

The parameter reports, of housekeeping and of diagnostic nature, can be generated periodically or on request.

The periodic generation of each type of parameter report can be enabled or disabled. For example, the periodic generation of the reports for a housekeeping parameter report type can be disabled to reduce the on-board processing load. A diagnostic parameter report type can be enabled when a particular anomaly occurs and be disabled at other times.

A collection interval is attached to each type of parameter report. The collection interval represents the time interval at which the parameters are collected to generate the corresponding reports.

A sampling interval is associated to each on-board parameter. The sampling interval is used by the application process responsible for acquiring or calculating the values of the corresponding parameter.

Each parameter report is defined as a combination of simply commutated parameters and/or super commutated parameters.

A simply commutated parameter definition implies that only one sampled value of that parameter is present within each related parameter report corresponding to one value of the parameter collected during the collection interval.

A super commutated parameter definition implies that more than one sampled values of that parameter is present, each sample value corresponding to a value of the parameter collected during the collection interval at a sub-period equal to the collection interval divided by the number of super commutated sampled values.

Within a parameter report definition, each related parameter appears only once, either as a simply commutated parameter or as a super commutated parameter.

Parameter functional reporting configuration subservice

The parameter functional reporting configuration subservice type provides the capability to control the generation of the parameter reports generated by the housekeeping and the diagnostic reporting subservices e.g. to ease the management of housekeeping configuration on mode transitions.

The parameter functional reporting configuration subservice operates on sets of parameter reports, of housekeeping or diagnostic nature, e.g. enabling or disabling the generation of such sets. Functional configurations can be applied exclusively, in which case the periodic generation of each report type of the service is disabled before applying the functional configurations.

Housekeeping telemetry compression subservice

This non-standard, PROBA-3 sub-service of the housekeeping telemetry service allows compressing housekeeping parameters reports (PUS 3,25).

[bookmark: _Toc9958275]Service layout

Subservice

Housekeeping reporting subservice

Each housekeeping service shall contain at least one housekeeping reporting subservice.

Diagnostic reporting subservice

Each housekeeping service shall contain zero or more diagnostic reporting subservices.

Parameter functional reporting configuration subservice

Each housekeeping service shall contain at most one parameter functional reporting configuration subservice.

Housekeeping telemetry compression subservice

Each housekeeping service shall contain at most one Housekeeping telemetry compression subservice.

[bookmark: _Toc9958276]Housekeeping reporting subservice

General

[bookmark: ST003_tailorALO_90a1a05c-7024-4aef-9b0f-]Generate housekeeping parameter reports

The housekeeping reporting subservice shall provide the capability to generate housekeeping parameter reports.

The corresponding reports are data reports of message type "TM[3,25] housekeeping parameter report".

Each housekeeping parameter report shall contain exactly one housekeeping parameter notification.

Each housekeeping parameter notification shall contain:

the housekeeping parameter report structure identifier;

in the specified order for simply commutated parameters, a single sampled value for each simply commutated parameter;

in the specified order for super commutated parameter sets, for each super commutated parameter set:

the "super commutated sample repetition number" sets of sampled values.

For each housekeeping parameter report structure for which periodic generation is enabled, the housekeeping reporting subservice shall generate a corresponding housekeeping parameter report periodically, according to the collection interval specified for that definition.

[bookmark: TC_003_005_SYS][bookmark: ST003_tailorALO_a640687e-5cff-42d7-8b25-]Enable the periodic generation of housekeeping parameter reports

The housekeeping reporting subservice capability to enable the periodic generation of housekeeping parameter reports shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[3,5] enable the periodic generation of housekeeping parameter reports".

Each request to enable the periodic generation of housekeeping parameter reports shall contain one or more instructions to enable the periodic generation of a housekeeping parameter report.

Each instruction to enable the periodic generation of a housekeeping parameter report shall contain:

the housekeeping parameter report structure identifier to enable.

The housekeeping reporting subservice shall reject any instruction to enable the periodic generation of a housekeeping parameter report if:

that instruction refers to a housekeeping parameter report structure that is unknown.

For each instruction to enable the periodic generation of a housekeeping parameter report that it rejects, the housekeeping reporting subservice shall generate the failed start of execution notification for that instruction.

The housekeeping reporting subservice shall process any valid instruction that is contained within a request to enable the periodic generation of housekeeping parameter reports regardless of the presence of faulty instructions.

For each valid instruction to enable the periodic generation of a housekeeping parameter report, the housekeeping reporting subservice shall:

set the periodic generation action status of that housekeeping parameter report structure to "enabled".

[bookmark: TC_003_006_SYS][bookmark: ST003_tailorALO_598cbd3c-76d1-4db5-8175-]Disable the periodic generation of housekeeping parameter reports

The housekeeping reporting subservice shall provide the capability to disable the periodic generation of housekeeping parameter reports if the capability to enable the periodic generation of housekeeping parameter reports is provided by that subservice.

The corresponding requests are of message type "TC[3,6] disable the periodic generation of housekeeping parameter reports".

For the capability to enable the periodic generation of housekeeping parameter reports, refer to clause 6.1.3.3.

Each request to disable the periodic generation of housekeeping parameter reports shall contain one or more instructions to disable the periodic generation of a housekeeping parameter report.

Each instruction to disable the periodic generation of a housekeeping parameter report shall contain:

the housekeeping parameter report structure identifier to disable.

The housekeeping reporting subservice shall reject any instruction to disable the periodic generation of a housekeeping parameter report if:

that instruction refers to a housekeeping parameter report structure that is unknown.

For each instruction to disable the periodic generation of a housekeeping parameter report that it rejects, the housekeeping reporting subservice shall generate the failed start of execution notification for that instruction.

The housekeeping reporting subservice shall process any valid instruction that is contained within a request to disable the periodic generation of housekeeping parameter reports regardless of the presence of faulty instructions.

For each valid instruction to disable the periodic generation of a housekeeping parameter report, the housekeeping reporting subservice shall:

set the periodic generation action status of that housekeeping parameter report structure to "disabled".

[bookmark: TC_003_001_SYS][bookmark: ST003_tailorALO_b830804b-c6b1-441a-b7fc-]Create a housekeeping parameter report structure

The housekeeping reporting subservice capability to create a housekeeping parameter report structure shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[3,1] create a housekeeping parameter report structure".

Each request to create a housekeeping parameter report structure shall contain exactly one instruction to create a housekeeping parameter report structure.

Each instruction to create a housekeeping parameter report structure shall contain:

the housekeeping parameter report structure identifier to create;

the collection interval;

the list of simply commutated parameters in the required order;

the list of super commutated parameter sets in the required order.

The housekeeping reporting subservice shall reject any request to create a housekeeping parameter report structure if any of the following conditions occurs:

the same parameter is identified more than once in that request;

that request contains an instruction that refers to a housekeeping parameter report structure that is already in use;

the resources allocated to the hosting of housekeeping parameter report structures are exceeded.

For each request to create a housekeeping parameter report structure that is rejected, the housekeeping reporting subservice shall generate a failed start of execution notification.

For each valid instruction to create a housekeeping parameter report structure, the housekeeping reporting subservice shall:

create that definition;

set its periodic generation action status to "disabled".

[bookmark: TC_003_003_SYS][bookmark: ST003_tailorALO_6383c4fc-a1cc-4fee-a600-]Delete housekeeping parameter report structures

The housekeeping reporting subservice shall provide the capability to delete housekeeping parameter report structures if the capability to create a housekeeping parameter report structure is provided by that subservice.

The corresponding requests are of message type "TC[3,3] delete housekeeping parameter report structures".

For the capability to create a housekeeping parameter report structure, refer to clause 6.1.3.5.

Each request to delete housekeeping parameter report structures shall contain one or more instructions to delete a housekeeping parameter report structure.

Each instruction to delete a housekeeping parameter report structure shall contain:

the housekeeping parameter report structure identifier to delete.

The housekeeping reporting subservice shall reject any instruction to delete a housekeeping parameter report structure if any of the following conditions occurs:

that instruction refers to a housekeeping parameter report structure that is unknown;

that instruction refers to a housekeeping parameter report structure whose periodic generation action status is "enabled".

For each instruction to delete a housekeeping parameter report structure that it rejects, the housekeeping reporting subservice shall generate the failed start of execution notification for that instruction.

The housekeeping reporting subservice shall process any valid instruction that is contained within a request to delete housekeeping parameter report structures regardless of the presence of faulty instructions.

For each valid instruction to delete a housekeeping parameter report structure, the housekeeping reporting subservice shall:

delete the housekeeping parameter report structure referred to by that instruction.

[bookmark: TM_003_010_SYS][bookmark: TC_003_009_SYS][bookmark: ST003_tailorALO_ea595f01-fb12-49b8-a8db-]Report housekeeping parameter report structures

The housekeeping reporting subservice capability to report housekeeping parameter report structures shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[3,9] report housekeeping parameter report structures". The responses, one for each instruction, are data reports of message type "TM[3,10] housekeeping parameter report structure report".

That capability requires the capability for that subservice to create a housekeeping parameter report structure (refer to clause 6.1.3.5).

Each request to report housekeeping parameter report structures shall contain one or more instructions to report a housekeeping parameter report structure.

Each instruction to report a housekeeping parameter report structure shall contain:

the housekeeping parameter report structure identifier to report.

The housekeeping reporting subservice shall reject any instruction to report a housekeeping parameter report structure if:

that instruction refers to a housekeeping parameter report structure that is unknown.

For each instruction to report a housekeeping parameter report structure that it rejects, the housekeeping reporting subservice shall generate the failed start of execution notification for that instruction.

The housekeeping reporting subservice shall process any valid instruction that is contained within a request to report housekeeping parameter report structures regardless of the presence of faulty instructions.

For each valid instruction to report a housekeeping parameter report structure, the housekeeping reporting subservice shall generate a single housekeeping parameter report structure notification that includes:

the housekeeping parameter report structure identifier;

If the housekeeping reporting subservice provides the capability for managing the periodic generation of housekeeping parameter reports, the periodic generation action status;

the collection interval;

the ordered list of simply commutated parameters;

the ordered list of super commutated parameter sets.

[bookmark: TC_003_029_SYS][bookmark: ST003_tailorALO_d54f49e7-860b-49f2-8878-]Append parameters to a housekeeping parameter report structure

The housekeeping reporting subservice capability to append parameters to a housekeeping parameter report structure shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[3,29] append parameters to a housekeeping parameter report structure".

That capability requires the capability for that subservice to create a housekeeping parameter report structure (refer to clause 6.1.3.5).

Each request to append parameters to a housekeeping parameter report structure shall contain exactly one instruction to append parameters to a housekeeping parameter report structure.

Each instruction to append parameters to a housekeeping parameter report structure shall contain:

the housekeeping parameter report structure identifier to modify;

if the housekeeping parameter report structure only includes simply commutated parameters, at least one of:

the ordered list of simply commutated parameters to add;

the ordered list of super commutated parameter sets to add;

if the housekeeping parameter report structure includes super commutated parameters:

the ordered list of super commutated parameter sets to add.

The housekeeping reporting subservice shall reject any request to append parameters to a housekeeping parameter report structure if any of the following conditions occurs:

the periodic generation action status of the housekeeping parameter report is "enabled";

that request contains an instruction that refers to a housekeeping parameter report structure that is unknown;

that request contains an instruction that refers to a parameter that is unknown;

that request contains an instruction that refers to simply commutated parameters to add to a definition that contains super commutated parameters;

that request contains an instruction that refers to a parameter that is already present in the definition;

the resources allocated to the hosting of housekeeping parameter report structures are exceeded.

For each request to append parameters to a housekeeping parameter report structure that is rejected, the housekeeping reporting subservice shall generate a failed start of execution notification.

For each valid instruction to append parameters to a housekeeping parameter report structure, the housekeeping reporting subservice shall:

add, at the end of the housekeeping parameter report structure, the list of simply commutated parameters, if any, followed by the list of super commutated parameter sets, if any.

[bookmark: TM_003_025_SYS][bookmark: TC_003_027_SYS][bookmark: ST003_tailorALO_fb672cb2-b206-4ce3-93cb-]Generate a one shot report for housekeeping parameter report structures

The housekeeping reporting subservice capability to generate a one shot report for housekeeping parameter report structures shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[3,27] generate a one shot report for housekeeping parameter report structures". The responses, one for each instruction, are data reports of message type "TM[3,25] housekeeping parameter report".

Each request to generate a one shot report for housekeeping parameter report structures shall contain one or more instructions to generate a one shot report for a housekeeping parameter report structure.

Each instruction to generate a one shot report for a housekeeping parameter report structure shall contain:

the housekeeping parameter report structure identifier of the report to generate.

The housekeeping reporting subservice shall reject any instruction to generate a one shot report for a housekeeping parameter report structure if:

that instruction refers to a housekeeping parameter report structure that is unknown.

For each instruction to generate a one shot report for a housekeeping parameter report structure that it rejects, the housekeeping reporting subservice shall generate the failed start of execution notification for that instruction.

The housekeeping reporting subservice shall process any valid instruction that is contained within a request to generate a one shot report for housekeeping parameter report structures regardless of the presence of faulty instructions.

For each valid instruction to generate a one shot report for a housekeeping parameter report structure, the housekeeping reporting subservice shall generate a single housekeeping parameter report.

The housekeeping parameter report is defined in clause 6.1.3.2.

[bookmark: TC_003_031_SYS][bookmark: ST003_tailorALO_055b4eae-67bc-4b5b-92bb-]Modify the collection interval of housekeeping parameter report structures

The housekeeping reporting subservice capability to modify the collection interval of housekeeping parameter report structures shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[3,31] modify the collection interval of housekeeping parameter report structures".

Each request to modify the collection interval of housekeeping parameter report structures shall contain one or more instructions to modify the collection interval of a housekeeping parameter report structure.

Each instruction to modify the collection interval of a housekeeping parameter report structure shall contain:

the housekeeping parameter report structure identifier to modify;

the new collection interval.

The housekeeping reporting subservice shall reject any instruction to modify the collection interval of a housekeeping parameter report structure if:

that instruction refers to a housekeeping parameter report structure that is unknown.

For each instruction to modify the collection interval of a housekeeping parameter report structure that it rejects, the housekeeping reporting subservice shall generate the failed start of execution notification for that instruction.

The housekeeping reporting subservice shall process any valid instruction that is contained within a request to modify the collection interval of housekeeping parameter report structures regardless of the presence of faulty instructions.

For each valid instruction to modify the collection interval of a housekeeping parameter report structure, the housekeeping reporting subservice shall:

set the collection interval of that housekeeping parameter report structure to the new collection interval specified in that instruction.

[bookmark: TM_003_035_SYS][bookmark: TC_003_033_SYS][bookmark: ST003_tailorALO_3e7f9bd2-1e4a-4122-bf88-]Report the periodic generation properties of housekeeping parameter report structures

The housekeeping reporting subservice capability to report the periodic generation properties of housekeeping parameter report structures shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[3,33] report the periodic generation properties of housekeeping parameter report structures". The responses are data reports of message type "TM[3,35] housekeeping parameter report periodic generation properties report".

Each request to report the periodic generation properties of housekeeping parameter report structures shall contain one or more instructions to report the periodic generation properties of a housekeeping parameter report structure.

Each instruction to report the periodic generation properties of a housekeeping parameter report structure shall contain:

the housekeeping parameter report structure identifier to report.

The housekeeping reporting subservice shall reject any instruction to report the periodic generation properties of a housekeeping parameter report structure if:

that instruction refers to a housekeeping parameter report structure that is unknown.

For each instruction to report the periodic generation properties of a housekeeping parameter report structure that it rejects, the housekeeping reporting subservice shall generate the failed start of execution notification for that instruction.

The housekeeping reporting subservice shall process any valid instruction that is contained within a request to report the periodic generation properties of housekeeping parameter report structures regardless of the presence of faulty instructions.

For each valid instruction to report the periodic generation properties of a housekeeping parameter report structure, the housekeeping reporting subservice shall generate a single housekeeping parameter report periodic generation properties notification that includes:

the housekeeping parameter report structure identifier;

the related periodic generation action status;

the related collection interval.

For each valid request to report the periodic generation properties of housekeeping parameter report structures, the housekeeping reporting subservice shall generate a single housekeeping parameter report periodic generation properties report that contains all related housekeeping parameter report periodic generation properties notifications.

Subservice observables

This Standard does not define any observables for the housekeeping reporting subservice.

[bookmark: _Toc9958277]Diagnostic reporting subservice

General

[bookmark: ST003_tailorALO_88133b83-ee9f-4d14-a98c-]Generate diagnostic parameter reports

The diagnostic reporting subservice shall provide the capability to generate diagnostic parameter reports.

The corresponding reports are data reports of message type "TM[3,26] diagnostic parameter report".

Each diagnostic parameter report shall contain exactly one diagnostic parameter notification.

Each diagnostic parameter notification shall contain:

the diagnostic parameter report structure identifier;

in the specified order for simply commutated parameters, a single sampled value for each simply commutated parameter;

in the specified order for super commutated parameter sets, for each super commutated parameter set:

the "super commutated sample repetition number" set of sampled values.

For each diagnostic parameter report structure for which periodic generation is enabled, the diagnostic reporting subservice shall generate a corresponding diagnostic parameter report periodically, according to the collection interval specified for that definition.

For each diagnostic parameter report structure for which periodic generation is enabled, the diagnostic reporting subservice shall collect one sampled value for each simply commutated parameter during the collection interval specified for the corresponding diagnostic parameter report structure.

For each diagnostic parameter report structure for which periodic generation is enabled, the diagnostic reporting subservice shall collect all sampled values for each super commutated parameter during the collection interval specified for the corresponding diagnostic parameter report structure, in accordance with a sub-period equal to the collection interval divided by the corresponding "super commutated sample repetition number".

[bookmark: TC_003_007_SYS][bookmark: ST003_tailorALO_d0cefd2d-bab5-44e5-b993-]Enable the periodic generation of diagnostic parameter reports

The diagnostic reporting subservice shall provide the capability to enable the periodic generation of diagnostic parameter reports.

The corresponding requests are of message type "TC[3,7] enable the periodic generation of diagnostic parameter reports".

Each request to enable the periodic generation of diagnostic parameter reports shall contain one or more instructions to enable the periodic generation of a diagnostic parameter report.

Each instruction to enable the periodic generation of a diagnostic parameter report shall contain:

the diagnostic parameter report structure identifier to enable.

The diagnostic reporting subservice shall reject any instruction to enable the periodic generation of a diagnostic parameter report if:

that instruction refers to a diagnostic parameter report structure that is unknown.

For each instruction to enable the periodic generation of a diagnostic parameter report that it rejects, the diagnostic reporting subservice shall generate the failed start of execution notification for that instruction.

The diagnostic reporting subservice shall process any valid instruction that is contained within a request to enable the periodic generation of diagnostic parameter reports regardless of the presence of faulty instructions.

For each valid instruction to enable the periodic generation of a diagnostic parameter report, the diagnostic reporting subservice shall:

set the periodic generation action status of that diagnostic parameter report structure to "enabled".

[bookmark: TC_003_008_SYS][bookmark: ST003_tailorALO_cce04a5d-8ad5-470b-952c-]Disable the periodic generation of diagnostic parameter reports

The diagnostic reporting subservice shall provide the capability to disable the periodic generation of diagnostic parameter reports.

The corresponding requests are of message type "TC[3,8] disable the periodic generation of diagnostic parameter reports".

Each request to disable the periodic generation of diagnostic parameter reports shall contain one or more instructions to disable the periodic generation of a diagnostic parameter report.

Each instruction to disable the periodic generation of a diagnostic parameter report shall contain:

the diagnostic parameter report structure identifier to disable.

The diagnostic reporting subservice shall reject any instruction to disable the periodic generation of a diagnostic parameter report if:

that instruction refers to a diagnostic parameter report structure that is unknown.

For each instruction to disable the periodic generation of a diagnostic parameter report that it rejects, the diagnostic reporting subservice shall generate the failed start of execution notification for that instruction.

The diagnostic reporting subservice shall process any valid instruction that is contained within a request to disable the periodic generation of diagnostic parameter reports regardless of the presence of faulty instructions.

For each valid instruction to disable the periodic generation of a diagnostic parameter report, the diagnostic reporting subservice shall:

set the periodic generation action status of that diagnostic parameter report structure to "disabled".

[bookmark: TC_003_002_SYS][bookmark: ST003_tailorALO_dcde6d92-4e7e-4e9c-afbb-]Create a diagnostic parameter report structure

The diagnostic reporting subservice shall provide the capability to create a diagnostic parameter report structure.

The corresponding requests are of message type "TC[3,2] create a diagnostic parameter report structure".

Each request to create a diagnostic parameter report structure shall contain exactly one instruction to create a diagnostic parameter report structure.

Each instruction to create a diagnostic parameter report structure shall contain:

the diagnostic parameter report structure identifier to create;

the collection interval;

the list of simply commutated parameters in the required order;

the list of super commutated parameter sets in the required order.

The diagnostic reporting subservice shall reject any request to create a diagnostic parameter report structure if any of the following conditions occurs:

the same parameter is identified more than once in that request;

that request contains an instruction that refers to a diagnostic parameter report structure identifier that is already in use;

the resources allocated to the hosting of diagnostic parameter report structures are exceeded.

For each request to create a diagnostic parameter report structure that is rejected, the diagnostic reporting subservice shall generate a failed start of execution notification.

For each valid instruction to create a diagnostic parameter report structure, the diagnostic reporting subservice shall:

create a diagnostic parameter report structure, for the report defined in that instruction;

set the periodic generation action status of the new diagnostic parameter report structure to "disabled".

[bookmark: TC_003_004_SYS][bookmark: ST003_tailorALO_db704048-6445-4fee-8532-]Delete diagnostic parameter report structures

The diagnostic reporting subservice shall provide the capability to delete diagnostic parameter report structures.

The corresponding requests are of message type "TC[3,4] delete diagnostic parameter report structures".

Each request to delete diagnostic parameter report structures shall contain one or more instructions to delete a diagnostic parameter report structure.

Each instruction to delete a diagnostic parameter report structure shall contain:

the diagnostic parameter report structure identifier to delete.

The diagnostic reporting subservice shall reject any instruction to delete a diagnostic parameter report structure if any of the following conditions occurs:

that instruction refers to a diagnostic parameter report structure that is unknown;

that instruction refers to a diagnostic parameter report structure whose periodic generation action status is "enabled".

For each instruction to delete a diagnostic parameter report structure that it rejects, the diagnostic reporting subservice shall generate the failed start of execution notification for that instruction.

The diagnostic reporting subservice shall process any valid instruction that is contained within a request to delete diagnostic parameter report structures regardless of the presence of faulty instructions.

For each valid instruction to delete a diagnostic parameter report structure, the diagnostic reporting subservice shall:

delete the diagnostic parameter report structure referred to by that instruction.

[bookmark: TM_003_012_SYS][bookmark: TC_003_011_SYS][bookmark: ST003_tailorALO_45555533-0759-4412-a59f-]Report diagnostic parameter report structures

The diagnostic reporting subservice capability to report diagnostic parameter report structures shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[3,11] report diagnostic parameter report structures". The responses, one for each instruction, are data reports of message type "TM[3,12] diagnostic parameter report structure report".

That capability requires the capability for that subservice to create a diagnostic parameter report structure (refer to clause 6.1.4.5).

Each request to report diagnostic parameter report structures shall contain one or more instructions to report a diagnostic parameter report structure.

Each instruction to report a diagnostic parameter report structure shall contain:

the diagnostic parameter report structure identifier to report.

The diagnostic reporting subservice shall reject any instruction to report a diagnostic parameter report structure if:

that instruction refers to a diagnostic parameter report structure that is unknown.

For each instruction to report a diagnostic parameter report structure that it rejects, the diagnostic reporting subservice shall generate the failed start of execution notification for that instruction.

The diagnostic reporting subservice shall process any valid instruction that is contained within a request to report diagnostic parameter report structures regardless of the presence of faulty instructions.

For each valid instruction to report a diagnostic parameter report structure, the diagnostic reporting subservice shall generate a single diagnostic parameter report structure notification that includes:

the diagnostic parameter report structure identifier;

the periodic generation action status;

the collection interval;

the ordered list of simply commutated parameters;

the ordered list of super commutated parameter sets.

[bookmark: TC_003_030_SYS][bookmark: ST003_tailorALO_1ceae3be-23c9-4887-918c-]Append parameters to a diagnostic parameter report structure

The diagnostic reporting subservice capability to append parameters to a diagnostic parameter report structure shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[3,30] append parameters to a diagnostic parameter report structure".

That capability requires the capability for that subservice to create a diagnostic parameter report structure (refer to clause 6.1.4.5).

Each request to append parameters to a diagnostic parameter report structure shall contain exactly one instruction to append parameters to a diagnostic parameter report structure.

Each instruction to append parameters to a diagnostic parameter report structure shall contain:

the diagnostic parameter report structure identifier to modify;

if the diagnostic parameter report structure only includes simply commutated parameters, at least one of:

the ordered list of simply commutated parameters to add;

the ordered list of super commutated parameter sets to add;

if the diagnostic parameter report structure includes super commutated parameters:

the ordered list of super commutated parameter sets to add.

The diagnostic reporting subservice shall reject any request to append parameters to a diagnostic parameter report structure if any of the following conditions occurs:

the periodic generation action status of the diagnostic parameter report is enabled;

that request contains an instruction that refers to a diagnostic parameter report structure that is unknown;

that request contains an instruction that refers to a parameter that is unknown;

that request contains an instruction that refers to simply commutated parameters to add to a definition that contains super commutated parameters;

that request contains an instruction that refers to a parameter that is already present in the definition;

the resources allocated to the hosting of diagnostic parameter report structures are exceeded.

For each request to append parameters to a diagnostic parameter report structure that is rejected, the diagnostic reporting subservice shall generate a failed start of execution notification.

For each valid instruction to append parameters to a diagnostic parameter report structure, the diagnostic reporting subservice shall:

add, at the end of the diagnostic parameter report structure, the list of simply commutated parameters, if any, followed by the list of super commutated parameter sets, if any.

[bookmark: TM_003_026_SYS][bookmark: TC_003_028_SYS][bookmark: ST003_tailorALO_d357ab41-cc69-45b9-9849-]Generate a one shot report for diagnostic parameter report structures

The diagnostic reporting subservice capability to generate a one shot report for diagnostic parameter report structures shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[3,28] generate a one shot report for diagnostic parameter report structures". The responses, one for each instruction, are data reports of message type "TM[3,26] diagnostic parameter report".

Each request to generate a one shot report for diagnostic parameter report structures shall contain one or more instructions to generate a one shot report for a diagnostic parameter report structure.

Each instruction to generate a one shot report for a diagnostic parameter report structure shall contain:

the diagnostic parameter report structure identifier of the report to generate.

The diagnostic reporting subservice shall reject any instruction to generate a one shot report for a diagnostic parameter report structure if:

that instruction refers to a diagnostic parameter report structure that is unknown.

For each instruction to generate a one shot report for a diagnostic parameter report structure that it rejects, the diagnostic reporting subservice shall generate the failed start of execution notification for that instruction.

The diagnostic reporting subservice shall process any valid instruction that is contained within a request to generate a one shot report for diagnostic parameter report structures regardless of the presence of faulty instructions.

For each valid instruction to generate a one shot report for a diagnostic parameter report structure, the diagnostic reporting subservice shall generate a single diagnostic parameter report.

The diagnostic parameter report is defined in clause 6.1.4.2.

[bookmark: TC_003_032_SYS][bookmark: ST003_tailorALO_548327f1-ce71-4854-b14d-]Modify the collection interval of diagnostic parameter report structures

The diagnostic reporting subservice capability to modify the collection interval of diagnostic parameter report structures shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[3,32] modify the collection interval of diagnostic parameter report structures".

Each request to modify the collection interval of diagnostic parameter report structures shall contain one or more instructions to modify the collection interval of a diagnostic parameter report structure.

Each instruction to modify the collection interval of a diagnostic parameter report structure shall contain:

the diagnostic parameter report structure identifier to modify;

the new collection interval.

The diagnostic reporting subservice shall reject any instruction to modify the collection interval of a diagnostic parameter report structure if:

that instruction refers to a diagnostic parameter report structure that is unknown.

For each instruction to modify the collection interval of a diagnostic parameter report structure that it rejects, the diagnostic reporting subservice shall generate the failed start of execution notification for that instruction.

The diagnostic reporting subservice shall process any valid instruction that is contained within a request to modify the collection interval of diagnostic parameter report structures regardless of the presence of faulty instructions.

For each valid instruction to modify the collection interval of a diagnostic parameter report structure, the diagnostic reporting subservice shall:

set the collection interval of that diagnostic parameter report structure to the new collection interval specified in that instruction.

[bookmark: TM_003_036_SYS][bookmark: TC_003_034_SYS][bookmark: ST003_tailorALO_ac5763f3-5f2d-47d6-9e9b-]Report the periodic generation properties of diagnostic parameter report structures

The diagnostic reporting subservice capability to report the periodic generation properties of diagnostic parameter report structures shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[3,34] report the periodic generation properties of diagnostic parameter report structures". The responses are data reports of message type "TM[3,36] diagnostic parameter report periodic generation properties report".

Each request to report the periodic generation properties of diagnostic parameter report structures shall contain one or more instructions to report the periodic generation properties of a diagnostic parameter report structure.

Each instruction to report the periodic generation properties of a diagnostic parameter report structure shall contain:

the diagnostic parameter report structure identifier to report.

The diagnostic reporting subservice shall reject any instruction to report the periodic generation properties of a diagnostic parameter report structure if:

that instruction refers to a diagnostic parameter report structure that is unknown.

For each instruction to report the periodic generation properties of a diagnostic parameter report structure that it rejects, the diagnostic reporting subservice shall generate the failed start of execution notification for that instruction.

The diagnostic reporting subservice shall process any valid instruction that is contained within a request to report the periodic generation properties of diagnostic parameter report structures regardless of the presence of faulty instructions.

For each valid instruction to report the periodic generation properties of a diagnostic parameter report structure, the diagnostic reporting subservice shall generate a single diagnostic parameter report periodic generation properties notification that includes:

the diagnostic parameter report structure identifier;

the related periodic generation action status;

the related collection interval.

For each valid request to report the periodic generation properties of diagnostic parameter report structures, the diagnostic reporting subservice shall generate a single diagnostic parameter report periodic generation properties report that contains all related diagnostic parameter report periodic generation properties notifications.

Subservice observables

This Standard does not define any observables for the diagnostic reporting subservice.

[bookmark: _Toc9958278]Parameter functional reporting configuration subservice

General

[bookmark: TC_003_037_SYS][bookmark: ST003_tailorALO_3a3519ff-2285-4900-acbb-]Apply parameter functional reporting configurations

The parameter functional reporting configuration subservice shall provide the capability to apply parameter functional reporting configurations.

The corresponding requests are of message type "TC[3,37] apply parameter functional reporting configurations".

Each request to apply parameter functional reporting configurations shall contain:

the configuration execution flag indicating whether the execution of that request is exclusive or non-exclusive;

one or more instructions to apply a parameter functional reporting configuration.

The parameter functional reporting configuration subservice shall reject any request to apply parameter functional reporting configurations if:

that request refers to an invalid configuration execution flag.

For each request to apply parameter functional reporting configurations that is rejected, the parameter functional reporting configuration subservice shall generate a failed start of execution notification.

For each valid request to apply parameter functional reporting configurations, the parameter functional reporting configuration subservice shall:

if the configuration execution flag of that request is exclusive, set the periodic generation action status of each enabled parameter report of the housekeeping service to "disabled".

Each instruction to apply a parameter functional reporting configuration shall contain:

the parameter functional reporting definition identifier.

The parameter functional reporting configuration subservice shall reject any instruction to apply a parameter functional reporting configuration if:

that instruction refers to a parameter functional reporting definition that is unknown.

For each instruction to apply a parameter functional reporting configuration that it rejects, the parameter functional reporting configuration subservice shall generate the failed start of execution notification for that instruction.

The parameter functional reporting configuration subservice shall process any valid instruction that is contained within a request to apply parameter functional reporting configurations regardless of the presence of faulty instructions.

For each valid instruction to apply a parameter functional reporting configuration, the parameter functional reporting configuration subservice shall:

for each parameter report definition referenced by the parameter functional reporting definition identified in that instruction, instruct the corresponding housekeeping or diagnostic reporting subservice:

if the parameter report definition exists, to modify the collection interval of that parameter report definition, and;

according to the periodic generation enabling or disabling action specified for that parameter report definition, to enable or to disable the periodic generation of the related parameter reports.

[bookmark: TC_003_038_SYS][bookmark: ST003_tailorALO_34fe0ca4-c0e2-432b-a468-]Create a parameter functional reporting definition

The parameter functional reporting configuration subservice capability to create a parameter functional reporting definition shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[3,38] create a parameter functional reporting definition".

Each request to create a parameter functional reporting definition shall contain exactly one instruction to create a parameter functional reporting definition.

Each instruction to create a parameter functional reporting definition shall contain:

the identifier of the parameter functional reporting definition to create;

a list of one or more parameter reporting entries consisting of:

if the housekeeping service is distributed on several on-board application processes, the application process identifier of that parameter report definition;

an indication of the nature of the parameter report definition;

the identifier of the parameter report definition;

the periodic generation action status;

the collection interval.

The parameter functional reporting configuration subservice shall reject any request to create a parameter functional reporting definition if any of the following conditions occurs:

that request contains more than one instruction for the same parameter report definition;

that request contains an instruction that refers to an unknown application process;

that request contains an instruction that refers to an unknown parameter report definition;

that request contains an instruction that refers to a parameter functional reporting definition that already exists.

For each request to create a parameter functional reporting definition that is rejected, the parameter functional reporting configuration subservice shall generate a failed start of execution notification.

For each valid instruction to create a parameter functional reporting definition, the parameter functional reporting configuration subservice shall:

create a new parameter functional reporting definition.

[bookmark: TC_003_039_SYS][bookmark: ST003_tailorALO_a70f58b8-a096-43bd-9e69-]Delete parameter functional reporting definitions

The parameter functional reporting configuration subservice shall provide the capability to delete parameter functional reporting definitions if the capability to create a parameter functional reporting definition is provided by that subservice.

The corresponding requests are of message type "TC[3,39] delete parameter functional reporting definitions".

For the capability to create a parameter functional reporting definition, refer to clause 6.1.5.3.

Each request to delete parameter functional reporting definitions shall contain one or more instructions to delete a parameter functional reporting definition.

Each instruction to delete a parameter functional reporting definition shall contain:

the identifier of the parameter functional reporting definition to delete.

The parameter functional reporting configuration subservice shall reject any instruction to delete a parameter functional reporting definition if:

that instruction refers to a parameter functional reporting definition that is unknown.

For each instruction to delete a parameter functional reporting definition that it rejects, the parameter functional reporting configuration subservice shall generate the failed start of execution notification for that instruction.

The parameter functional reporting configuration subservice shall process any valid instruction that is contained within a request to delete parameter functional reporting definitions regardless of the presence of faulty instructions.

For each valid instruction to delete a parameter functional reporting definition, the parameter functional reporting configuration subservice shall:

delete that definition.

[bookmark: TM_003_041_SYS][bookmark: TC_003_040_SYS][bookmark: ST003_tailorALO_c490843d-6114-49ed-91ee-]Report parameter functional reporting definitions

The parameter functional reporting configuration subservice capability to report parameter functional reporting definitions shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[3,40] report parameter functional reporting definitions". The responses, one for each instruction, are data reports of message type "TM[3,41] parameter functional reporting definition report".

That capability requires the capability for that subservice to create a parameter functional reporting definition (refer to clause 6.1.5.3).

Each request to report parameter functional reporting definitions shall contain one or more instructions to report a parameter functional reporting definition.

Each instruction to report a parameter functional reporting definition shall contain:

the identifier of the parameter functional reporting definition to report.

The parameter functional reporting configuration subservice shall reject any instruction to report a parameter functional reporting definition if:

that instruction refers to a parameter functional reporting definition that is unknown.

For each instruction to report a parameter functional reporting definition that it rejects, the parameter functional reporting configuration subservice shall generate the failed start of execution notification for that instruction.

The parameter functional reporting configuration subservice shall process any valid instruction that is contained within a request to report parameter functional reporting definitions regardless of the presence of faulty instructions.

For each valid instruction to report a parameter functional reporting definition, the parameter functional reporting configuration subservice shall generate a single parameter functional reporting definition notification that includes:

the identifier of the parameter functional reporting definition;

for each related parameter reporting entry, exactly one parameter functional reporting definition notification, that includes:

if the housekeeping service is distributed on several on-board application processes, the application process identifier;

an indication of the nature of the parameter report definition as housekeeping or diagnostic;

the identifier of the parameter report definition;

the periodic generation action status;

the collection interval.

[bookmark: TC_003_042_SYS][bookmark: ST003_tailorALO_ea2a03d9-a760-464b-a555-]Add parameter report definitions to a parameter functional reporting definition

The parameter functional reporting configuration subservice capability to add parameter report definitions to a parameter functional reporting definition shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[3,42] add parameter report definitions to a parameter functional reporting definition".

That capability requires the capability for that subservice to create a parameter functional reporting definition (refer to clause 6.1.5.3).

Each request to add parameter report definitions to a parameter functional reporting definition shall contain:

the identifier of the parameter functional reporting definition;

one or more instructions to add a parameter report definition to a parameter functional reporting definition.

The parameter functional reporting configuration subservice shall reject any request to add parameter report definitions to a parameter functional reporting definition if any of the following conditions occurs:

that request refers to a parameter functional reporting definition that is unknown;

that request contains more than one instruction for the same parameter report definition.

For each request to add parameter report definitions to a parameter functional reporting definition that is rejected, the parameter functional reporting configuration subservice shall generate a failed start of execution notification.

Each instruction to add a parameter report definition to a parameter functional reporting definition shall contain:

the parameter report entry to add that consists of:

if the housekeeping service is distributed on several on-board application processes, the application process identifier;

an indication of the nature of the parameter report definition;

the identifier of the parameter report definition;

the periodic generation action status;

the collection interval.

The parameter functional reporting configuration subservice shall reject any instruction to add a parameter report definition to a parameter functional reporting definition if:

that instruction refers to a parameter report definition that is already in that parameter functional reporting definition.

For each instruction to add a parameter report definition to a parameter functional reporting definition that it rejects, the parameter functional reporting configuration subservice shall generate the failed start of execution notification for that instruction.

The parameter functional reporting configuration subservice shall process any valid instruction that is contained within a request to add parameter report definitions to a parameter functional reporting definition regardless of the presence of faulty instructions.

For each valid instruction to add a parameter report definition to a parameter functional reporting definition, the parameter functional reporting configuration subservice shall:

add the related definition.

[bookmark: TC_003_043_SYS][bookmark: ST003_tailorALO_e3dc078b-a754-4cbd-b6e7-]Remove parameter report definitions from a parameter functional reporting definition

The parameter functional reporting configuration subservice shall provide the capability to remove parameter report definitions from a parameter functional reporting definition if the capability to add parameter report definitions to a parameter functional reporting definition is provided by that subservice.

The corresponding requests are of message type "TC[3,43] remove parameter report definitions from a parameter functional reporting definition".

For the capability to add parameter report definitions to a parameter functional reporting definition, refer to clause 6.1.5.6.

Each request to remove parameter report definitions from a parameter functional reporting definition shall contain:

the parameter functional reporting definition identifier;

one or more instructions to remove a parameter report definition from a parameter functional reporting definition.

The parameter functional reporting configuration subservice shall reject any request to remove parameter report definitions from a parameter functional reporting definition if:

that request refers to a parameter functional reporting definition that is unknown.

For each request to remove parameter report definitions from a parameter functional reporting definition that is rejected, the parameter functional reporting configuration subservice shall generate a failed start of execution notification.

Each instruction to remove a parameter report definition from a parameter functional reporting definition shall contain:

the identification of the parameter reporting definition to remove, consisting of:

if the housekeeping service is distributed on several on-board application processes, the application process identifier;

an indication of the nature of the parameter report definition as housekeeping or diagnostic;

the identifier of the parameter report definition.

The parameter functional reporting configuration subservice shall reject any instruction to remove a parameter report definition from a parameter functional reporting definition if:

that instruction refers to a parameter report definition that is not in that parameter functional reporting definition.

For each instruction to remove a parameter report definition from a parameter functional reporting definition that it rejects, the parameter functional reporting configuration subservice shall generate the failed start of execution notification for that instruction.

The parameter functional reporting configuration subservice shall process any valid instruction that is contained within a request to remove parameter report definitions from a parameter functional reporting definition regardless of the presence of faulty instructions.

For each valid instruction to remove a parameter report definition from a parameter functional reporting definition, the parameter functional reporting configuration subservice shall:

remove that definition.

[bookmark: TC_003_044_SYS][bookmark: ST003_tailorALO_0a7502e1-5925-43ba-9da6-]Modify the periodic generation properties of parameter report definitions of a parameter functional reporting definition

The parameter functional reporting configuration subservice capability to modify the periodic generation properties of parameter report definitions of a parameter functional reporting definition shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[3,44] modify the periodic generation properties of parameter report definitions of a parameter functional reporting definition".

Each request to modify the periodic generation properties of parameter report definitions of a parameter functional reporting definition shall contain:

the identifier of the parameter functional reporting definition to modify;

one or more instructions to modify the periodic generation properties of a parameter report definition of a parameter functional reporting definition.

The parameter functional reporting configuration subservice shall reject any request to modify the periodic generation properties of parameter report definitions of a parameter functional reporting definition if:

that request refers to a parameter functional reporting definition that is unknown.

For each request to modify the periodic generation properties of parameter report definitions of a parameter functional reporting definition that is rejected, the parameter functional reporting configuration subservice shall generate a failed start of execution notification.

Each instruction to modify the periodic generation properties of a parameter report definition of a parameter functional reporting definition shall contain:

if the housekeeping service is distributed on several on-board application processes, the application process identifier of that parameter report definition;

an indication of the nature of the parameter report definition as housekeeping or diagnostic;

the identifier of the parameter report definition;

the periodic generation action status;

the collection interval.

The parameter functional reporting configuration subservice shall reject any instruction to modify the periodic generation properties of a parameter report definition of a parameter functional reporting definition if:

that instruction refers to a parameter report definition that is not in that parameter functional reporting definition.

For each instruction to modify the periodic generation properties of a parameter report definition of a parameter functional reporting definition that it rejects, the parameter functional reporting configuration subservice shall generate the failed start of execution notification for that instruction.

The parameter functional reporting configuration subservice shall process any valid instruction that is contained within a request to modify the periodic generation properties of parameter report definitions of a parameter functional reporting definition regardless of the presence of faulty instructions.

For each valid instruction to modify the periodic generation properties of a parameter report definition of a parameter functional reporting definition, the parameter functional reporting configuration subservice shall:

modify the related parameter report entry by:

changing the periodic generation action status to the supplied value;

changing the collection interval to the supplied value.

Subservice observables

This Standard does not define any observables for the parameter functional reporting configuration subservice.

[bookmark: _Toc9958279]Housekeeping telemetry compression subservice

General

[bookmark: TM_003_154_SYS][bookmark: ST003_tailorALO_66dc488a-1acd-426b-9ca0-]Generate compressed housekeeping telemetry packet

The Housekeeping telemetry compression subservice shall provide the capability to generate compressed housekeeping telemetry packet.

The corresponding reports are data reports of message type "TM[3,154] Send Compressed housekeeping telemetry packet".

Each Send Compressed housekeeping telemetry packet shall contain exactly one Send Compressed housekeeping telemetry packet.

Each Send Compressed housekeeping telemetry packet shall contain:

The structure identification which corresponds to the housekeeping parameter report for which this compressed housekeeping telemetry packet is generated;

The ID of the compression configuration used to create this compressed report;

The compression mode used to generate this packet;

Checksum of the original packet, necessary to the ground packet reconstruction process;

The compressed housekeeping data. It corresponds only to the data part of the housekeeping report, including the SID.

For each housekeeping parameter report that would be generated, if housekeeping compression is enabled for this parameter report structure, the housekeeping telemetry compression subservice shall generate a compressed housekeeping parameter report instead of this housekeeping parameter report.

[bookmark: TC_003_145_SYS][bookmark: ST003_tailorALO_26b750c7-5229-49c6-b898-]Define Housekeeping Compression Configuration

The Housekeeping telemetry compression subservice shall provide the capability to Define Housekeeping Compression Configuration.

The corresponding requests are of message type "TC[3,145] Define Housekeeping Compression Configuration".

Each request to Define Housekeeping Compression Configuration shall contain exactly one instruction to Define Housekeeping Compression Configuration.

Each instruction to Define Housekeeping Compression Configuration shall contain:

The structure identification which corresponds to the housekeeping parameter report to be compressed;

A version number set by ground to uniquely identify the compression settings used. This number is repeated in compressed packets to allow decompression.

The main compression mode used for compressing packets (reference mode or chain mode).

The secondary compression mode used for compressing packets (reference mode, chain mode, or uncompressed mode).

Number of packets after which the secondary compression mode is used (1 packet is sent using the secondary mode every ?frequency? packets). If this value is 0, the secondary mode is not used.

Maximum allowed size for a compressed packet. If this size is reached, compression is cancelled and the uncompressed packet is sent.

The Housekeeping telemetry compression subservice shall reject any instruction to Define Housekeeping Compression Configuration if:

There is no HK TM packet defined with the provided SID.

For each request to Define Housekeeping Compression Configuration that is rejected, the Housekeeping telemetry compression subservice shall generate a failed start of execution notification.

For each valid instruction to Define Housekeeping Compression Configuration, the Housekeeping telemetry compression subservice shall:

Defines or updates the compression configuration parameters for the provided SID.

[bookmark: TC_003_146_SYS][bookmark: ST003_tailorALO_0245bf2a-baff-4bdd-b2d5-]Define Housekeeping Compression Reference Packet

The Housekeeping telemetry compression subservice shall provide the capability to Define Housekeeping Compression Reference Packet.

The corresponding requests are of message type "TC[3,146] Define Housekeeping Compression Reference Packet ".

Each request to Define Housekeeping Compression Reference Packet shall contain exactly one instruction to Define Housekeeping Compression Reference Packet .

Each instruction to Define Housekeeping Compression Reference Packet shall contain:

The structure identification which corresponds to the housekeeping parameter report to which this reference packet applies.

Offset within the reference packet of the provided data, starting at 0. This is used only if the reference packet does not fit within a single telecommand.

Reference packet data bytes. It corresponds only to the data part of the housekeeping report, including the SID.

The Housekeeping telemetry compression subservice shall reject any instruction to Define Housekeeping Compression Reference Packet if any of the following conditions occurs:

The data size is not compatible with the HK TM packet size.

There is no HK TM packet defined with the provided SID;

There is no pocket configuration defined for the provided SID.

For each request to Define Housekeeping Compression Reference Packet that is rejected, the Housekeeping telemetry compression subservice shall generate a failed start of execution notification.

For each valid instruction to Define Housekeeping Compression Reference Packet , the Housekeeping telemetry compression subservice shall:

Update the reference packet associated to the SID with the provided data bytes, starting at byte identified by "offset".

[bookmark: TC_003_147_SYS][bookmark: ST003_tailorALO_ffe90854-03dd-48d0-93e3-]Define housekeeping compression packet mask

The Housekeeping telemetry compression subservice shall provide the capability to Define housekeeping compression packet mask.

The corresponding requests are of message type "TC[3,147] Define housekeeping compression packet mask".

Each request to Define housekeeping compression packet mask shall contain exactly one instruction to Define housekeeping compression packet mask.

Each instruction to Define housekeeping compression packet mask shall contain:

The structure identification which corresponds to the housekeeping parameter report to which this packet mask applies.

The compression mode to which this mask applies (reference or chain).

Offset within the packet mask of the provided data, starting at 0. This is used only if the mask packet does not fit within a single telecommand.

Packet mask data bytes. It corresponds only to the data part of the housekeeping report, including the SID.

[bookmark: TC_003_148_SYS][bookmark: ST003_tailorALO_6a24724f-1e3a-41c8-a00c-]Delete Housekeeping Compression Configuration

The Housekeeping telemetry compression subservice shall provide the capability to Delete Housekeeping Compression Configuration .

The corresponding requests are of message type "TC[3,148] Delete Housekeeping Compression Configuration ".

Each request to Delete Housekeeping Compression Configuration shall contain one or more instructions to Delete Housekeeping Compression Configuration .

Each instruction to Delete Housekeeping Compression Configuration shall contain:

The structure identification which corresponds to the housekeeping parameter report for which the compression configuration must be deleted.

The Housekeeping telemetry compression subservice shall reject any request to Delete Housekeeping Compression Configuration if:

No compression configuration defined for that SID.

For each request to Delete Housekeeping Compression Configuration that is rejected, the Housekeeping telemetry compression subservice shall generate a failed start of execution notification.

generateValidityAndOrderClause NOT IMPLEMENTED;

For each valid instruction to Delete Housekeeping Compression Configuration , the Housekeeping telemetry compression subservice shall:

Delete the complete compression configuration.

[bookmark: TC_003_149_SYS][bookmark: ST003_tailorALO_8d28b7c9-48bd-45ba-b52a-]Enable Housekeeping Compression

The Housekeeping telemetry compression subservice shall provide the capability to Enable Housekeeping Compression.

The corresponding requests are of message type "TC[3,149] Enable Housekeeping Compression".

Each request to Enable Housekeeping Compression shall contain one or more instructions to Enable Housekeeping Compression.

Each instruction to Enable Housekeeping Compression shall contain:

The structure identification which corresponds to the housekeeping parameter report for which the compression configuration must be enabled.

The Housekeeping telemetry compression subservice shall reject any request to Enable Housekeeping Compression if:

No compression configuration defined for that SID.

For each request to Enable Housekeeping Compression that is rejected, the Housekeeping telemetry compression subservice shall generate a failed start of execution notification.

generateValidityAndOrderClause NOT IMPLEMENTED;

For each valid instruction to Enable Housekeeping Compression, the Housekeeping telemetry compression subservice shall:

enable the compression of the corresponding HK report.

[bookmark: TC_003_150_SYS][bookmark: ST003_tailorALO_bfe122ab-e3c1-49d7-98ed-]Disable Housekeeping Comlpression

The Housekeeping telemetry compression subservice shall provide the capability to Disable Housekeeping Comlpression.

The corresponding requests are of message type "TC[3,150] Disable Housekeeping Compression".

Each request to Disable Housekeeping Compression shall contain one or more instructions to Disable Housekeeping Compression.

Each instruction to Disable Housekeeping Compression shall contain:

The structure identification which corresponds to the housekeeping parameter report for which the compression configuration must be disabled.

The Housekeeping telemetry compression subservice shall reject any request to Disable Housekeeping Compression if:

No compression configuration defined for that SID.

For each request to Disable Housekeeping Compression that is rejected, the Housekeeping telemetry compression subservice shall generate a failed start of execution notification.

generateValidityAndOrderClause NOT IMPLEMENTED;

For each valid instruction to Disable Housekeeping Compression, the Housekeeping telemetry compression subservice shall:

disable the compression of the corresponding HK report.

[bookmark: TC_003_151_SYS][bookmark: ST003_tailorALO_9d630757-806e-4436-8146-]Generate new housekeeping compression mask

The Housekeeping telemetry compression subservice capability to Generate new housekeeping compression mask shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[3,151] Generate new housekeeping compression mask". The responses are data reports of message type "TM[3,152] Send On-board generated housekeeping compression mask".

Each request to Generate new housekeeping compression mask shall contain exactly one instruction to Generate new housekeeping compression mask.

Each instruction to Generate new housekeeping compression mask shall contain:

The structure identification which corresponds to the housekeeping parameter report for which the new packet mask shall be computed.

The configuration version ID to use when compressing packets using the new mask.

The compression mode to which this mask applies (reference or chain).

The Housekeeping telemetry compression subservice shall reject any instruction to Generate new housekeeping compression mask if any of the following conditions occurs:

the provided mode is incorrect (not a mode ID);

There is no compression configuration defined for that SID.

For each request to Generate new housekeeping compression mask that is rejected, the Housekeeping telemetry compression subservice shall generate a failed start of execution notification.

For each valid instruction to Generate new housekeeping compression mask, the Housekeeping telemetry compression subservice shall:

request the OBSW to generate a new mask using the next HK packets data and send it to the ground when ready.

generate a single Send On-board generated housekeeping compression mask.

The Send On-board generated housekeeping compression mask is defined in clause 6.1.6.10.

For each valid request to Generate new housekeeping compression mask, the Housekeeping telemetry compression subservice shall generate a single Send On-board generated housekeeping compression mask that includes the related Send On-board generated housekeeping compression mask notification.

[bookmark: TM_003_152_SYS][bookmark: ST003_tailorALO_bb0a56ef-225e-4436-8555-]Send On-board generated housekeeping compression mask

The Housekeeping telemetry compression subservice capability to Send On-board generated housekeeping compression mask shall be declared when specifying that subservice.

The corresponding reports are data reports of message type "TM[3,152] Send On-board generated housekeeping compression mask".

Each Send On-board generated housekeeping compression mask shall contain exactly one Send On-board generated housekeeping compression mask.

Each Send On-board generated housekeeping compression mask shall contain:

The structure identification which corresponds to the housekeeping parameter report for which this mask is generated;

The configuration ID value applied to packets compressed using this new mask;

The compression mode to which this mask applies (reference or chain);

The new mask contents (The mask is sent compressed using the same zero-run encoding as the housekeeping packets). It corresponds only to the data part of the housekeeping report, including the SID.

Generated as answer to a "Generate new housekeeping compression mask" request.

Subservice observables

This Standard does not define any observables for the Housekeeping telemetry compression subservice.

[bookmark: ST129][bookmark: _Toc9958280]MS[129] Reaction wheels management

[bookmark: _Toc9958281]Scope

General

The RWL manager provides a means to control the Reaction Wheel unit. It is responsible for:

- Acquisition and calibration of RWL data, monitoring of their values and provision to the consumers;

- Commanding of the RWL as per FFSW output;

- Handling of RWL telecommands (activation/deactivation, FDIR, ?).

Reaction wheels commanding subservice

This subservice provides telecommands intended to command the reaction wheels.

Reaction wheels FDIR subservice

This subservice provides telecommands that are intended to be used for FDIR and can be used for event-actions.

Reaction wheels Rate Sensors management subservice

This subservices provides capabilities to enable/disable or invalidate rate sensors associated to reaction wheels.

Reaction Wheels direct commanding subservice

This subservice provides the ability to send direct commands to a reaction wheel.

[bookmark: _Toc9958282]Service layout

Subservice

Reaction wheels commanding subservice

Each Reaction wheels management service shall contain exactly one Reaction wheels commanding subservice.

Reaction wheels FDIR subservice

Each Reaction wheels management service shall contain exactly one Reaction wheels FDIR subservice.

Reaction wheels Rate Sensors management subservice

Each Reaction wheels management service shall contain at most one Reaction wheels Rate Sensors management subservice.

Reaction Wheels direct commanding subservice

Each Reaction wheels management service shall contain at most one Reaction Wheels direct commanding subservice.

[bookmark: _Toc9958283]Reaction wheels commanding subservice

General

[bookmark: TC_129_001_SYS][bookmark: ST129_tailorALO_e246b3f1-9611-4c75-b310-]Activate one reaction wheel

The Reaction wheels commanding subservice shall provide the capability to Activate one reaction wheel.

The corresponding requests are of message type "TC[129,1] activate one reaction wheel".

Each request to activate one reaction wheel shall contain exactly one instruction to activate one reaction wheel.

Each instruction to activate one reaction wheel shall contain:

reaction wheel ID.

For each valid instruction to activate one reaction wheel, the Reaction wheels commanding subservice shall:

- activate the required reaction wheel.

[bookmark: TC_129_004_SYS][bookmark: ST129_tailorALO_04f6fda1-bd5b-4a7b-83cc-]Deactivate one reaction wheel

The Reaction wheels commanding subservice shall provide the capability to Deactivate one reaction wheel.

The corresponding requests are of message type "TC[129,4] deactivate one reaction wheel".

Each request to deactivate one reaction wheel shall contain exactly one instruction to deactivate one reaction wheel.

Each instruction to deactivate one reaction wheel shall contain:

Reaction wheel ID.

For each valid instruction to deactivate one reaction wheel, the Reaction wheels commanding subservice shall:

- deactivate the required reaction wheel.

[bookmark: TC_129_002_SYS][bookmark: ST129_tailorALO_49da8e19-863a-4627-ad5c-]Activate three reaction wheels

The Reaction wheels commanding subservice capability to Activate three reaction wheels shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[129,2] activate three reaction wheels".

Each request to activate three reaction wheels shall contain exactly one instruction to activate three reaction wheels.

The instructions to activate three reaction wheels contain no argument.

The Reaction wheels commanding subservice shall reject any instruction to activate three reaction wheels if:

- not at least 3 RW ready to be activated.

For each request to activate three reaction wheels that is rejected, the Reaction wheels commanding subservice shall generate a failed start of execution notification.

For each valid instruction to activate three reaction wheels, the Reaction wheels commanding subservice shall:

- activate a set of 3 RWL, selected based on their availability, then based on their power on status, and finally based on a lane-dependent configurable list of 3 wheels.

[bookmark: TC_129_003_SYS][bookmark: ST129_tailorALO_7bfc32f5-eda0-4606-ba49-]Activate four reaction wheels

The Reaction wheels commanding subservice capability to Activate four reaction wheels shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[129,3] activate four reaction wheels".

Each request to activate four reaction wheels shall contain exactly one instruction to activate four reaction wheels.

The instructions to activate four reaction wheels contain no argument.

The Reaction wheels commanding subservice shall reject any instruction to activate four reaction wheels if:

- not all reaction wheels are available.

For each request to activate four reaction wheels that is rejected, the Reaction wheels commanding subservice shall generate a failed start of execution notification.

For each valid instruction to activate four reaction wheels, the Reaction wheels commanding subservice shall:

- activate the 4 reaction wheels.

[bookmark: TC_129_005_SYS][bookmark: ST129_tailorALO_bd868169-c946-415b-b9be-]Deactivate all reaction wheels

The Reaction wheels commanding subservice capability to Deactivate all reaction wheels shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[129,5] deactivate all reaction wheels".

Each request to deactivate all reaction wheels shall contain exactly one instruction to deactivate all reaction wheels.

The instructions to deactivate all reaction wheels contain no argument.

For each valid instruction to deactivate all reaction wheels, the Reaction wheels commanding subservice shall:

- deactivate all reaction wheels.

Subservice observables

This Standard does not define any observables for the Reaction wheels commanding subservice.

[bookmark: _Toc9958284]Reaction wheels FDIR subservice

General

[bookmark: TC_129_011_SYS][bookmark: ST129_tailorALO_b72aeade-2885-4739-a6fc-]Invalidate reaction wheel

The Reaction wheels FDIR subservice capability to Invalidate reaction wheel shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[129,11] invalidate reaction wheel".

Each request to invalidate reaction wheel shall contain exactly one instruction to invalidate reaction wheelk.

Each instruction to invalidate reaction wheelk shall contain:

reaction wheel ID.

For each valid instruction to invalidate reaction wheelk, the Reaction wheels FDIR subservice shall:

If the reaction wheel is active:

- deactivate it;

- set it unavailable.

[bookmark: TC_129_012_SYS][bookmark: ST129_tailorALO_ac7fc420-a356-4735-b3a0-]Power-cycle reaction wheel

The Reaction wheels FDIR subservice capability to power-cycle reaction wheel shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[129,12] power-cycle reaction wheel".

Each request to power-cycle reaction wheel shall contain exactly one instruction to power-cycle reaction wheel.

Each instruction to power-cycle reaction wheel shall contain:

reaction wheel ID.

For each valid instruction to power-cycle reaction wheel, the Reaction wheels FDIR subservice shall:

- Deactivate the reaction wheel in the same way as for the "Deactivate one Reaction Wheel" telecommand.

- Wait the amount of time (configurable).

- Activate the same Reaction Wheel in the same way as for the "Activate one Reaction Wheel" telecommand.

Subservice observables

This Standard does not define any observables for the Reaction wheels FDIR subservice.

[bookmark: _Toc9958285]Reaction wheels Rate Sensors management subservice

General

[bookmark: TC_129_021_SYS][bookmark: ST129_tailorALO_959f2a5c-31b6-47ed-b090-]Enable/disable rate sensor

The Reaction wheels Rate Sensors management subservice capability to Enable/disable rate sensor shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[129,21] enable/disable rate sensor".

Each request to enable/disable rate sensor shall contain exactly one instruction to enable/disable rate sensor.

Each instruction to enable/disable rate sensor shall contain:

reaction wheel ID;

sensor state.

The Reaction wheels Rate Sensors management subservice shall reject any instruction to enable/disable rate sensor if any of the following conditions occurs:

- the reaction wheel is unavailable.

- the reaction wheel is not powered ON.

For each request to enable/disable rate sensor that is rejected, the Reaction wheels Rate Sensors management subservice shall generate a failed start of execution notification.

[bookmark: TC_129_022_SYS][bookmark: ST129_tailorALO_fe895da3-4abd-4bdf-814c-]Invalidate rate sensor

The Reaction wheels Rate Sensors management subservice capability to Invalidate rate sensor shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[129,22] invalidate rate sensor".

Each request to invalidate rate sensor shall contain exactly one instruction to invalidate rate sensor.

Each instruction to invalidate rate sensor shall contain:

reaction wheel ID.

Subservice observables

This Standard does not define any observables for the Reaction wheels Rate Sensors management subservice.

[bookmark: _Toc9958286]Reaction Wheels direct commanding subservice

General

[bookmark: TC_129_031_SYS][bookmark: ST129_tailorALO_00eb4f77-461b-45ae-a2e0-]Send direct command to reaction wheel

The Reaction Wheels direct commanding subservice capability to Send direct command to reaction wheel shall be declared when specifying that subservice.

The corresponding requests are of message type "TC[129,31] Send direct command to reaction wheel".

Each request to Send direct command to reaction wheel shall contain exactly one instruction to send direct command to reaction wheel.

Each instruction to send direct command to reaction wheel shall contain:

reaction wheel ID;

data.

For each valid instruction to send direct command to reaction wheel, the Reaction Wheels direct commanding subservice shall:

- send the provided byte array (data) to the requested reaction wheel.

[bookmark: TM_129_032_SYS][bookmark: ST129_tailorALO_e64513fd-273c-4783-acb9-]Generate RWL report

The Reaction Wheels direct commanding subservice capability to generate RWL report shall be declared when specifying that subservice.

The corresponding reports are data reports of message type "TM[129,32] generate RWL report".

Each generate RWL report shall contain list of generate RWL reports.

Each generate RWL report shall contain:

The read data (excluding escape characters). Only the SSP message type and message data are provided.

TC(129,31).

Subservice observables

This Standard does not define any observables for the Reaction Wheels direct commanding subservice.

[bookmark: _Ref369967875][bookmark: SPEC_InterfaceRequirements][bookmark: _Toc447218048][bookmark: _Toc9958287]
Space to ground interface requirements

[bookmark: _Toc447218049][bookmark: _Toc9958288]Introduction

[bookmark: _Toc9958289]Packets

This Standard promotes using space packets compliant to the CCSDS space packet protocol to transport the PUS messages. It does not prescribe the protocol used to transport requests initiated on-board and reports destined for on-board.

In this Standard:

a "telecommand packet" is the data unit that is used to carry a service request from an application process on the ground to an application process on-board;

a "telemetry packet" is the data unit that is used to carry a service report from an application process on board to an application process on the ground.

The initiation of a request by a subservice user on the ground results in the transmission of a telecommand packet to the on-board subservice provider, the reception of which initiates the execution of the corresponding activity.

The initiation of a report by an on-board subservice provider results in the sending of a telemetry packet to a subservice user.

The specification of the activities performed by the ground as a subservice user (e.g. to generate requests or to process reports) is beyond the scope of this Standard.

Some of the PUS services defined in this Standard imply an exchange of messages between on-board application processes. The mechanisms used to exchange such messages on-board are mission-dependent and therefore outside the scope of this Standard.

The data format for telemetry packets and for telecommand packets is the "space packet" specified in CCSDS 133.0-B-1.

Clause 7.4 specifies how the common fields of a space packet are used for a telemetry or telecommand packet.

Service-specific fields are specified in clause 8.

Clauses 7.4 and 8 uses the standard PUS field types specified in clause 7.3.

This Standard does not exclude the use of other packet protocols that are fully compatible with its requirements for telemetry and telecommand packets.

[bookmark: _Toc9958290]Packet transport

Introduction

The telemetry or telecommand systems through which the packets are transported are layered, with each layer drawing upon a well-defined set of services provided by the layer below and providing a similarly well-defined set of services to the layer above (see ECSS-E-ST-50-03 and ECSS-E-ST-50-04).

[bookmark: _Ref386355488]Telemetry link

On the telemetry link, the physical channel can be shared between multiple Master Channels, for example, when one spacecraft acts as a relay for another spacecraft such as in a planetary orbiter/lander mission (see ECSS-E-ST-50-03). Each master channel is identified by a unique spacecraft identifier field in the telemetry frame header. However, for a typical mission comprising a single spacecraft, all the frames on a physical channel have the same value for the spacecraft identifier, so there is only one master channel on the physical channel.

Some spacecraft can use several physical channels for their telemetry data and can further differentiate the data transmitted on those channels by using different frame formats (for examples, see ECSS-E-ST-50-03 and CCSDS 732.0-B-2), or by other means outside the scope of this Standard.

Virtual Channels provide a technique for multiple on-board packet sources (application processes) to share the finite capacity of a physical link through multiplexing. Each virtual channel is identified by a unique virtual channel identifier field in the telemetry frame header and the frames from different virtual channels are multiplexed together on a master channel (see Figure 71). Up to eight virtual channels (refer to ECSS-E-ST-50-03) or up to 64 virtual channels (refer to CCSDS 732.0-B-2) can be supported on a master channel. Virtual channels can be used for a variety of purposes, such as:

flow control to prevent long packets from blocking the physical channel;

separating different types of data for stream splitting on the ground. For example, separating low-rate engineering data from high-rate science data for onward transmission on the ground or separating real-time data from playback data.

Whilst a long packet is being transmitted, the transmission of any other packets for the same virtual channel is delayed. To overcome this, a mission may define a maximum length for the telemetry packets to use by the mission, which is considerably shorter than the maximum length supported by the packet protocol used.

[bookmark: _Ref371334160]Telecommand link

On the telecommand link, the physical channel can also be shared between multiple master channels and virtual channels (see ECSS-E-ST-50-04). In addition, an optional identifier, called the multiplexer access point identifier (MAP ID), can be used to create multiple streams of telecommand data within a virtual channel. All the transfer frames on a given virtual channel with the same MAP ID constitute a MAP channel. Up to sixty-four MAP channels can be supported on a virtual channel. The choice of multiplexing algorithm and the allocation of priorities to the individual virtual channels and MAPs is implementation dependent. For example, MAPs can be used for:

flow control purposes;

telecommand prioritization i.e. a telecommand on a high-priority MAP can be transmitted before a telecommand arriving earlier on a lower-priority MAP;

telecommand routing as part of the telecommand decoding process.

Whilst there is a theoretically huge multiplexing capability available, real implementations generally use a very modest repertoire of MAP ID and virtual channel ID assignments.

 [image: MAP-VC]

[bookmark: _Ref294019187]Figure 71 Sharing a physical channel

[bookmark: _Toc447218050][bookmark: _Toc9958291]Convention

[bookmark: _Toc9958292]Structure diagram

In the remainder of this Standard, sequences of packet fields are presented in structure diagrams as shown in Figure 72.

		

		repeated N times

		N

		packet field 1

		packet field 2

		unsigned integer

		Boolean

		enumerated

		

optional

		

		

[bookmark: _Ref348003894]Figure 72 An example of a packet field structure diagram

For each field contained in the corresponding structure:

the field name is specified in the first row of the diagram;

the field type is specified in the second row.

Where the presence of a field, or group of fields, is optional, this is indicated by the text "optional" below the corresponding fields. A field or group of fields is optional if its presence is determined at the level of the mission, application process or service instance.

The omission of an optional field can imply that the value is known by both the subservice provider and the subservice user. For example, the subservice provider can use a fixed value or a "current value" which can be set by the subservice user through other means. The subservice provider can even use the values of other preceding fields in the request or report to access a fixed or modifiable lookup table in which the values are contained.

Where a field, or group of fields, constitutes an entry in a fixed-length or a variable-length array, this is indicated above the table by the text "repeated N times", where N is the number of repetitions within the array. In the case of a variable-length array, N is given explicitly at the start of the array. In the case of a fixed-length array, N is known implicitly for the mission.

[bookmark: _Toc9958293]Bit-field numbering

Each bit in a field (a n-bit field) is identified and numbered from left to right as follows:

The first bit, i.e. the leftmost justified bit on a figure, i.e. the most significant bit, is called "Bit 0";

The second bit is called "Bit 1";

and so on, up to "Bit N1".

A group of 8 adjacent bits is called an octet or a byte.

[bookmark: _Ref377537601][bookmark: _Ref377541379][bookmark: Pkt_PC][bookmark: _Toc447218051][bookmark: _Toc9958294]Packet field type code

[bookmark: _Toc9958295]General

[bookmark: _Ref422313875]Each packet field shall be associated to a packet field code that indicates the data type of any value carried by that packet field.

The packet field code specified in this Standard are uniquely identified by the combination of:

30. a packet field type code (PTC), and

30. a packet field format code (PFC).

1. The interpretation of each PFC is fully and only dependent on the associated PTC.

Tailoring this Standard for a mission, for each new message type defined for that mission, the packet field type code of each field of that new message type shall be declared when specifying that message type.

Tailoring this Standard for a mission, for each message type field that packet field format code is unknown, the packet field format code of that field shall be declared when specifying the application process that uses the related message type.

 The PTC specified in Table 71 shall be used to declare the PTC of each packet field.

[bookmark: _Ref371324586]Table 71 PTC – packet field type code

		PTC

		simple type correspondence

		1

		Boolean

		2

		enumerated

		3

		unsigned integer

		4

		signed integer

		5

		real

		6

		bit-string

		7

		octet-string

		8

		character-string

		9

		absolute time

		10

		relative time

		11

		deduced

		12

		packet

The PTC of each packet field shall be declared when specifying the structure of each packet type.

[bookmark: _Toc9958296]Boolean

0. Each packet field used to carry Boolean values shall be of PTC 1.

0. A Boolean value > 0 denotes TRUE.

0. A Boolean value = 0 denotes FALSE.

The PFCs specified in Table 72 shall be used for packet fields carrying Boolean values.

[bookmark: _Ref413665334]Table 72 PFC for Boolean values

		PFC

		format definition

		0

		1-bit Boolean parameter value

		n > 1

		The PFC identifies the length in bits of the Boolean parameter value, e.g. PFC = 8 means an 8-bits Boolean parameter value.

[bookmark: _Toc9958297]Enumerated

0. Each packet field used to carry enumerated values shall be of PTC 2.

0. An enumerated value is an unsigned integer value that can be involved in logical and comparative expressions but not in numeric and relational expressions.

0. An enumerated value has a meaning that is interpreted as a character-string value. An error code is a typical example (e.g. 0 means "unchecked", 3 means "invalid").

The PFCs specified in Table 73 shall be used for packet fields carrying enumerated values.

[bookmark: _Ref371324587]Table 73 PFC for enumerated values

		PFC

		format definition

		1 to 64

		The PFC identifies the length in bits of the enumerated parameter, e.g. PFC = 1 means one-bit parameter value.

[bookmark: _Toc9958298]Unsigned integer

0. Each packet field used to carry unsigned integer values shall be of PTC 3.

Each unsigned integer value shall be encoded with Bit 0 being the most significant bit (MSB) and Bit N1 the least significant bit (LSB).

The PFCs specified in Table 74 shall be used for packet fields carrying unsigned integer values.

[bookmark: _Ref371324588]Table 74 PFC for unsigned integer values

		PFC

		format definition

		lowest value

		highest value

		0 to 12

		(PFC + 4) bits, unsigned

		

		

		13

		3 octets, unsigned

		

		

		14

		4 octets, unsigned

		

		

		15

		6 octets, unsigned

		

		

		16

		8 octets, unsigned

		

		

		17

		1 bit, unsigned

		0

		1

		18

		2 bits, unsigned

		0

		3

		19

		3 bits, unsigned

		0

		7

[bookmark: _Toc9958299]Signed integer

0. Each packet field used to carry signed integer values shall be of PTC 4.

Bit 0 of each signed integer parameter shall be used to determine the sign of the parameter value.

0. Bit 0 = 0 denotes a positive value.

0. Bit 0 = 1 denotes a negative value.

0. Negative values are represented as 2’s complement of the absolute value.

The PFCs specified in Table 75 shall be used for packet fields carrying signed integer values.

[bookmark: _Ref371324589]Table 75 PFC for signed integer values

		PFC

		format definition

		lowest value

		highest value

		0 to 12

		(PFC + 4) bits, signed

		

		

		13

		3 octets, signed

		

		

		14

		4 octets, signed

		

		

		15

		6 octets, signed

		

		

		16

		8 octets, signed

		

		

[bookmark: _Toc9958300]Real

0. Each packet field used to carry real values shall be of PTC 5.

The PFCs specified in Table 76 shall be used for packet fields carrying real values.

[bookmark: _Ref371324590]Table 76 PFC for real values

		PFC

		format definition

		1

		4 octets simple precision format (IEEE)

		2

		8 octets double precision format (IEEE)

		3

		4 octets simple precision format (MIL-STD)

		4

		6 octets extended precision format (MIL-STD)

		NOTE 1	The IEEE simple precision and double precision formats are defined in "IEEE 754 Standard for Binary Floating-point Arithmetic" (Reference [7]), see also annex A.1.

NOTE 2	 The MIL-STD simple precision and extended precision formats are defined in the "Military Standard SixteenBit Computer Instruction Set Architecture" MIL-STD-1750a, 2nd July 1980 (Reference [8]), see also annex A.2.

[bookmark: _Toc9958301]Bitstring

0. Each packet field used to carry bit-string values shall be of PTC 6.

The PFCs specified in Table 77 shall be used for packet fields carrying bit-string values:

[bookmark: _Ref371324591]Table 77 PFC for bit-string values

		PFC

		format definition

		0

		variable-length bit-string

		n > 0

		fixed-length bit-string with a number of bits equal to PFC

		NOTE	The meaning and interpretation of a bit-string value is application process specific.

The variablelength bitstring shall have the structure specified in Figure 73.

		variable-length bit-string

		length

		data

		unsigned integer

		N bits

		NOTE	The packet field code "N bits" means that a value carried in the data field of a variable-length bit-string has a fixed number of bits that equals to the value carried in the corresponding length field.

[bookmark: _Ref371328197]Figure 73 PTC 6 PFC 0 structure

For each application process that uses variable-length octet-strings, the PFC of the length field of the variable-length bit-string format shall be declared when specifying that application process.

Each spare field of a telemetry or a telecommand packet shall be of fixed-length PTC 6.

For each spare field of a telemetry or a telecommand packet, all bits of that field shall be set to zero.

For each packet field containing a fixed-length bit-string whose length is deduced, the definition used to deduce that length shall be declared when specifying the related packet field type.

The deduced length corresponds to a fixed length PFC.

For each packet field containing a fixed-length bit-string whose length is deduced, the deduction of the length shall only result from the content of one or more preceding fields of the same packet, of one or more mission constants or a combination of both.

[bookmark: _Toc9958302]Octetstring

0. Each packet field used to carry octet-string values shall be of PTC 7.

The PFCs specified in Table 78 shall be used for packet fields carrying octet-string values.

[bookmark: _Ref371324592]Table 78 PFC for octet-string values

		PFC

		format definition

		0

		Variable-length octet-string

		n > 0

		Fixed-length octet-string with a number of octets equal to PFC

		NOTE	The meaning and interpretation of an octet-string value is application process specific.

The variablelength octetstring shall have the structure specified in Figure 74.

		variable-length octet-string

		length

		data

		unsigned integer

		N octets

		NOTE	The packet field code "N octets" means that a value carried in the data field of a variable-length octet-string has a fixed number of octets that equals to the value carried in the corresponding length field.

[bookmark: _Ref371328198]Figure 74 PTC 7 PFC 0 structure

[bookmark: FM_AP_PTC8PFC]For each application process that uses variable-length octet-strings, the PFC of the length field of the variable-length octet-string format shall be declared when specifying that application process.

For each packet field containing a fixed-length octet-string whose length is deduced, the definition used to deduce that length shall be declared when specifying the related packet field type.

The deduced length corresponds to a fixed length PFC.

For each packet field containing a fixed-length octet-string whose length is deduced, the deduction of the length shall only result from the content of one or more preceding fields of the same packet, of one or more mission constants or a combination of both.

[bookmark: _Toc9958303]Characterstring

0. Each packet field used to carry character-string values shall be of PTC 8.

The values that character-string parameters can take shall be sequences of visible characters.

Visible characters are defined in ANSI X3.4 (Reference [9]) and represented by their ASCII code on one octet.

The PFCs specified in Table 79 shall be used for packet fields carrying character-string values.

[bookmark: _Ref371324593]Table 79 PFC for character-string values

		PFC

		format definition

		0

		Variable-length character-string

		n > 0

		Fixed-length character-string with a number of characters equal to PFC

		NOTE	The meaning and interpretation of a character-string value is application process specific.

The variablelength characterstring format shall have the structure specified in Figure 75:

		variable-length character-string

		length

		data

		unsigned integer

		N characters

		NOTE 1	The packet field code "N character" means that a value carried in the data field of a variable-length character-string has a fixed number of characters that equals to the value carried in the corresponding length field.

NOTE 2	Each character of the value field is represented in ASCII on one octet.

[bookmark: _Ref371328199]Figure 75 PTC 8 PFC 0 structure

For each application process that uses variable-length character-strings, the PFC of the length field of the variable-length character-string format shall be declared when specifying that application process.

For each packet field containing a fixed-length character-string whose length is deduced, the definition used to deduce that length shall be declared when specifying the related packet field type.

The deduced length corresponds to a fixed length PFC.

For each packet field containing a fixed-length character-string whose length is deduced, the deduction of the length shall only result from the content of one or more preceding fields of the same packet, of one or more mission constants or a combination of both.

[bookmark: _Toc9958304]Absolute time

0. Each packet field used to carry absolute time values shall be of PTC 9.

Each absolute time parameter value shall be a positive time offset that is a number of seconds and fractions of a second from a given epoch.

0. If the CUC format is used, either the standard CCSDS epoch of 1958 January 1 or an Agency defined epoch can be used. In the latter case, the parameter corresponds to a free-running counter that is converted on ground using the applicable time correlation coefficients.

0. The CUC format is specified in CCSDS 301.0-B-4. The CCSDS offers means to define CUC coarse time values using 1 to 7 octets and fine time values using 1 to 10 octets. This Standard implements means to define CUC coarse time values using 1 to 4 octets and fine time values using 1 to 10 octets.

If the absolute time parameter has CDS format, the standard CCSDS epoch of 1958 January 1 shall be used.

The CDS format is specified in CCSDS 301.0-B-4.

The PFCs specified in Table 710 shall be used for packet fields carrying absolute time values.

[bookmark: _Ref371324594]Table 710 PFC for absolute time values

		PFC

		format definition

		0

		Explicit definition of time format (CUC or CDS), i.e. including the Pfield

		1

		2 octets day CDS format without a µs field

The parameter field has a length equal to 6 octets.

		2

		2 octets day CDS format with a µs field

The parameter field has a length equal to 8 octets.

		3 to 18

		CUC format with:

The number of octets of coarse time equals the integer quotient of (PFC number + 1) divided by 4, and

The number of octets of fine time equals the remainder of (PFC number + 1) divided by 4.

The Pfield is implicit and derived from the PFC.

		19 to 46

		CUC format with:

The number of octets of coarse time equals the integer quotient of (PFC number -12) divided by 7, and

The number of octets of fine time equals 4 + the remainder of (PFC number -12) divided by 7.

The Pfield is implicit and derived from the PFC.

		NOTE 1	The CUC and CDS time formats are defined in CCSDS 301.0-B-4.

NOTE 2	The CDS Format with µs, i.e. PFC = 2 has the structure shown in figure below. The value of day is an unsigned integer in the range.

		day

		ms of day

		µs of ms

		2 octets

		4 octets

		2 octets

NOTE 3	The full CUC format, i.e. PFC 18 has the structure shown in figure below. The time in seconds from the given Agency epoch is given by .

		C1

		C2

		C3

		C4

		F1

		F2

		F3

		1 octet

		1 octet

		1 octet

		1 octet

		1 octet

		1 octet

		1 octet

[bookmark: _Toc9958305]Relative time

Each packet field used to carry relative time values shall be of PTC 10.

Each relative time parameter value shall be a positive or a negative time offset that is the number of seconds and fractions of a second from the occurrence time of an event whose identification can be derived from other parameters in the packet (identifying a type of on-board event) or a number of seconds and fractions of a second between two absolute times.

A negative time offset is expressed as the "2’s complement" of the corresponding positive time offset.

The PFCs specified in Table 711 shall be used for packet fields carrying relative time values.

[bookmark: _Ref371324595]Table 711 PFC for relative time values

		PFC

		format definition

		2

		2 octets day CDS format with a µs field

The parameter field has a length equal to 8 octets.

		3 to 18

		CUC format with:

The number of octets of coarse time equals the integer quotient of (PFC number + 1) divided by 4, and

The number of octets of fine time equals the remainder of (PFC number + 1) divided by 4.

The Pfield is implicit and derived from the PFC.

		NOTE	The full CUC format, i.e. PFC 18 has the structure shown in figure below. 	A positive time offset is given by

		C1

		C2

		C3

		C4

		F1

		F2

		F3

		1 octet

		1 octet

		1 octet

		1 octet

		1 octet

		1 octet

		1 octet

[bookmark: _Toc9958306]Deduced

Each packet field whose structure and format is deduced shall be of PTC 11 PFC 0.

For each packet field whose structure and format is deduced, the definition used to deduce that structure and format shall be declared when specifying the related packet field type.

For each packet field whose structure and format is deduced, the deduction of the structure and format shall only result from the content of one or more preceding fields of the same packet, of one or more mission constants or a combination of both.

[bookmark: _Toc9958307]Packet

Each packet field used to carry packets shall be of PTC 12.

The PFCs specified in Table 712 shall be used for packet fields carrying packets.

[bookmark: _Ref386616468]Table 712 PFC for packet values

		PFC

		format definition

		0

		CCSDS telemetry packet compliant with this Standard

		1

		CCSDS telecommand packet compliant with this Standard

		NOTE	For PFC 0 and PFC 1, refer to clause 7.4.

[bookmark: _Ref371334324][bookmark: FM_CCSDSSpacePacket][bookmark: _Toc447218052][bookmark: _Toc9958308]The CCSDS Space Packet

[bookmark: _Toc9958309]Overview

The CCSDS Space Packet Protocol is defined in CCSDS 133.0-B-1. The generic structure of a CCSDS space packet is shown in Figure 76.

		packet primary header

		packet data field

		packet version number

		packet ID

		packet sequence control

		packet data length

		packet secondary header

		user data field

		

		packet type

		secondary header flag

		application process ID

		sequence flags

		packet sequence count or packet name

		

		

		

		3 bits

		1 bit

		1 bit

		11 bits

		2 bits

		14 bits

		16 bits

		variable

		variable

		2 octets

		2 octets

		2 octets

		1 to 65536 octets

[bookmark: _Ref348080162]Figure 76 The space packet structure

The packet version number is set to 0 and identifies it as a space packet defined by CCSDS 133. 0-B-1. A space packet is also referred to as a version 1 CCSDS packet.

The packet type bit distinguishes between telemetry packets, for which this bit is set to 0, and telecommand packets, for which this bit is set to 1.

The secondary header flag indicates the presence or absence of the packet secondary header. With the exception of spacecraft time packets (refer to clause Error! Reference source not found.), all telemetry packets defined in this Standard have a packet secondary header field. With the exception of CPDU command packets (refer to clause 9.3.1), all telecommand packets defined in this Standard have a packet secondary header field.

The application process ID uniquely identifies the on-board application process that is source of the telemetry packet and destination of the telecommand packet. Some values of the application process ID field are reserved by the CCSDS standard, making them unavailable for use by PUS services.

The sequence flags are defined by CCSDS but not used by the space packet protocol. This Standard uses the binary value "11" for the sequence flags, to indicate a stand-alone packet. All telemetry packets and telecommand packets defined within this Standard are standalone packets.

The packet sequence count is used for telemetry packets. It is incremented by 1 whenever the source application process releases a packet. The packet sequence count wraps around from 214-1 to zero.

The telecommand packets carry either a packet sequence count or a packet name to identify them within the same communication session. For the purpose of this Standard, the telecommand packet sequence count or packet name field carries an identifier that used in combination with the source identifier specified in clause 7.4.4.1, uniquely identify the telecommand packet.

The packet data length field specifies the length of the packet data field. The value of the unsigned integer in the packet data length field is one less than the number of octets contained within the packet data field. The length of the entire packet, including the packet primary header, is 6 octets more than the length of the packet data field.

The structure of the packet data field depends on the packet type.

for telemetry packets that field is composed of:

the telemetry packet secondary header specified in clause 7.4.3.1;

the telemetry user data field specified in clause 7.4.3.2;

for telecommand packets that field is composed of:

the telecommand packet secondary header specified in clause 7.4.4.1;

the telecommand user data field specified in clause 7.4.4.2.

[bookmark: _Toc9958310]General

Once a telecommand or a telemetry packet has been generated by an application process, no one shall update that packet.

[bookmark: _Toc9958311]Telemetry packet data field

[bookmark: _Ref377538969]Telemetry packet secondary header

[bookmark: _Ref380332738]With the exception of the spacecraft time packets specified in clauses Error! Reference source not found. and Error! Reference source not found., all telemetry packets defined in this Standard shall have a telemetry packet secondary header.

Each telemetry packet secondary header shall have the structure specified in Figure 77.

		TM packet PUS version number

		spacecraft time reference status

		message type ID

		message type counter

		destination ID

		time

		spare

		

		

		service type ID

		message subtype ID

		

		

		

		

		enumerated

(4 bits)

		enumerated

(4 bits)

		enumerated

(8 bits)

		enumerated

(8 bits)

		unsigned integer

(16 bits)

		enumerated

(16 bits)

		absolute time

		fixed-size bit-string

		

		

		

		

		

		

		

		

optional

		NOTE	The spare field is used to constrain the length of the telemetry packet secondary header to an integral number of words. Its optional presence is driven by requirement 7.4.3.1l.

[bookmark: _Ref351358817]Figure 77 Packet secondary header for telemetry packets

Each application process shall set the TM packet PUS version number of each telemetry packet it generates to 2.

The TM packet PUS version number reflects the different versions of this Standard.

39. Version 0 was used by the ESA PUS (ESA PSS-07-101).

39. Version 1 corresponds to the ECSS-E-70-41A.

Each application process that provides the capability to report the spacecraft time reference status used when time tagging telemetry packets shall set the spacecraft time reference status field of each telemetry packet it generates to the status of the on-board time reference used when time tagging that telemetry packet.

0. For the capability to report the status of the on-board time reference, refer to requirement 5.4.2.1h.

0. For the possible values of the spacecraft time reference status, refer to requirement Error! Reference source not found.. If the reporting of the spacecraft time reference status is not supported, the spacecraft time reference status field value is set to 0.

0. The time tag of the telemetry packet is stored in the time field of the telemetry packet secondary header.

Each application process that does not provide the capability to report the status of the on-board time reference used when time tagging telemetry packets shall set the spacecraft time reference status field of each telemetry packet it generates to 0.

For the capability to report the status of the on-board time reference, refer to requirement 5.4.2.1h.

For each report that it generates, each application process shall set the message type ID field of the corresponding telemetry packet to the message type identifier of that report.

The structure of the message type ID field is driven by requirement 5.3.3.1c.

For each report that it generates, each application process that provides the capability to count the type of generated messages per destination and report the corresponding message type counter shall set the message type counter of the related telemetry packet to the value of the related counter.

For the capability to count the type of generated messages, refer to requirement 5.4.2.1j.

Each application process that does not provide the capability to count the type of generated messages per destination and report the corresponding message type counter shall set the message type counter field of each telemetry packet it generates to 0.

For the capability to count the type of generated messages, refer to requirement 5.4.2.1j.

Each application process shall set the destination ID field of each telemetry packet it generates to the application process user identifier of the application process addressed by the related report.

For the application process user identifier, refer to requirement 5.4.2.1d.

[bookmark: FM_TMPacket_PUSHeaderTimePFC]The PFC of the time field of telemetry packets shall be declared when specifying the time service used by the spacecraft.

For the time service, refer to clause Error! Reference source not found..

Each application process shall set the time field of each telemetry packet it generates to the time tag of the related report.

See requirement 5.4.2.1g.

[bookmark: FM_TMPacket_PUSHeaderSpareField]For each application process, the presence and bit-size of the spare field of the telemetry packet secondary header shall be declared when specifying that application process.

[bookmark: _Ref377538980]Telemetry user data field

Each telemetry user data field shall have the structure specified in Figure 78.

		source data

		spare

		packet error control

		deduced

		fixed-size bit-string

(deduced)

		fixed-size bit-string

(16 bits)

		

		

optional

		

optional

		NOTE 1	The structure and format of the source data is deduced from the message type ID. For each report message type specified in this Standard, the structure and format of the source data is specified in clause 8.

NOTE 2	The spare field is used to constrain the overall packet size to an integral number of words (octets or longer), appropriate to the word size of the application process. Its optional presence is driven by requirement 7.4.3.2c.

NOTE 3	The packet error control field transports an error detection code that is used by the ground system to verify the checksum of the telemetry packet. Its optional presence is driven by requirement 7.4.3.2d.

[bookmark: _Ref371607700]Figure 78 User data field for telemetry packets

The telemetry padding word size used by each application process shall be declared when specifying that application process.

The telemetry padding word size is the multiple-of-bits number to apply when padding telemetry packets.

[bookmark: _Ref355172486]For each telemetry packet that it generates, each application process shall ensure that the total length of that packet is an integer multiple of the padding word size declared for that application process by including a user data spare field of the minimum bit-size that results in that integer multiple.

[bookmark: _Ref371669469]Whether checksumming telemetry packets is used shall be declared when tailoring this standard to the mission.

[bookmark: FM_ChecksumTMPacket]If checksumming telemetry packets is used for the mission, the type of checksum to use, that is either the ISO standard 16-bits checksum or the CRC standard 16-bits, shall be declared when tailoring this standard to the mission.

0. For the CRC standard 16-bits checksum algorithm, refer to annex B.1.

NOTE 44 For the ISO standard 16-bits checksum algorithm, refer to annex B.2.

If checksumming telemetry packets is used for the mission, for each telemetry packet that it generates, each application process shall:

calculate the checksum of that packet, and

set the calculated value in the packet error control field of that packet.

0. The telemetry packet checksum is calculated when all other fields of the packet are complete, and prior to downloading the packet.

0. The telemetry packet checksum is used by the ground system to verify the checksum of the complete telemetry packet.

0. Checksumming telemetry packets includes also checksumming large telemetry packets, see clause Error! Reference source not found..

[bookmark: _Toc9958312]Telecommand packet data field

[bookmark: _Ref377538991][bookmark: _Ref435100122]Telecommand packet secondary header

With the exception of the CPDU command packet specified in clause 9, all telecommand packets defined in this Standard shall have a telecommand packet secondary header.

Each telecommand packet secondary header shall have the structure specified in Figure 79.

		TC packet PUS version number

		acknowledgement flags

		message type ID

		source ID

		spare

		

		

		service type ID

		message subtype ID

		

		

		enumerated

(4 bits)

		enumerated

(4 bits)

		enumerated

(8 bits)

		enumerated

(8 bits)

		enumerated

(16 bits)

		fixed-size bit-string

		

		

		

		

		

		

optional

		NOTE	The spare field is used to constrain the length of the telecommand packet secondary header to an integral number of words. Its optional presence of is driven by requirement 7.4.4.1g.

[bookmark: _Ref351456556]Figure 79 Packet secondary header for telecommand packets

For each request that it issues, each application process shall set the TC packet PUS version number to 2.

The TC packet PUS version number reflects the different versions of this Standard.

47. Version 0 was used by the ESA PUS (ESA PSS-07-101).

47. Version 1 corresponds to the ECSS-E-70-41A.

For each request that it issues, each application process shall set:

the bit 3 of the acknowledgement flags field of the corresponding telecommand packet to:

1 if the reporting of the successful acceptance of that request by the destination application process is requested

0 otherwise;

the bit 2 of the acknowledgement flags field of the corresponding telecommand packet to:

1 if successful start of execution of that request by the destination application process is requested;

0 otherwise;

the bit 1 of the acknowledgement flags field of the corresponding telecommand packet to:

1 if the reporting of the successful progresses of execution of that request by the destination application process is requested;

0 otherwise;

the bit 0 of the acknowledgement flags field of the corresponding telecommand packet to:

1 if the reporting of the successful completion of execution of the related request by the destination application process is requested;

0 otherwise.

0. For item 1, refer to requirement 5.4.11.2.2a.1.

0. For item 2, refer to requirement 5.4.11.2.2a.2.

0. For item 3, refer to requirement 5.4.11.2.2a.3.

0. For item 4, refer to requirement 5.4.11.2.2a.4.

For each request that it issues, each application process shall set the message type ID field of the corresponding telecommand packet to the message type identifier of that request.

The structure of the message type ID field is driven by requirement 5.3.3.1c.

For each request that it issues, each application process shall set the source ID field to its source identifier.

For the source identifier, see requirement 5.4.11.2.1c.

[bookmark: FM_TCPacket_PUSHeaderSpareField]For each application process that issues requests, the presence and bit-size of the spare field of the telecommand packet secondary header shall be declared when specifying that application process.

[bookmark: _Ref377538998]Telecommand user data field

Each telecommand user data field shall have the structure specified in Figure 710.

		application data

		spare

		packet error control

		deduced

		fixed-size bit-string

(deduced)

		fixed-size bit-string

(16 bits)

		

		

optional

		

		NOTE 1	The structure and format of the application data is deduced from the message type ID. For each request type specified in this Standard, the structure and format of the application data is specified in clause 6.

NOTE 2	The spare field is used to constrain the overall packet size to an integral number of words (octets or longer), appropriate to the word size of the application process. Its optional presence and deduced size are driven by requirement 7.4.4.2c.

[bookmark: _Ref351456950]Figure 710 User data field for telecommand packets

The telecommand padding word size used for each application process shall be declared when specifying that application process.

The telecommand padding word size is the multiple-of-bits number to apply when padding telecommand packets.

[bookmark: _Ref355447978]For each telecommand packet that it generates, each application process shall ensure that the total length of that packet is an integer multiple of the padding word size declared for that application process, by including a user data spare field of the minimum bit-size that results in that integer multiple.

[bookmark: FM_ChecksumTCPacket]The type of checksum to use for checksumming all telecommand packets, which is either the ISO standard 16-bits checksum or the CRC standard 16-bits checksum, shall be declared when tailoring this standard to the mission.

0. For the CRC standard 16-bits checksum algorithm, refer to annex B.1.

NOTE 53 For the ISO standard 16-bits checksum algorithm, refer to annex B.2.

For each telecommand packet that it generates, each application process shall:

calculate the checksum of that packet, and

set the calculated value in the packet error control field of that packet.

0. The telecommand packet checksum is calculated when all other fields of the packet are complete, and prior to releasing the packet.

0. The checksum of each telecommand packet that is received on-board is verified using the checksum that is contained within the packet error control field of the packet. Refer also to requirement Error! Reference source not found..

[bookmark: _Ref369962109][bookmark: _Ref369964986][bookmark: ST_InterfaceRequirements][bookmark: _Ref432772757][bookmark: _Toc447218053][bookmark: _Toc9958313]
Service type interface requirements

[bookmark: ST003_IF][bookmark: _Toc9958314]ST[03] housekeeping

[bookmark: _Toc9958315]General

Each packet transporting a housekeeping message shall be of service type 3.

[bookmark: _Toc9958316]Requests and reports

[bookmark: TC_003_001_IF]TC[3,1] create a housekeeping parameter report structure

Each telecommand packet transporting a request to create a housekeeping parameter report structure shall be of message subtype 1.

For the corresponding system requirements, refer to clause 6.1.3.5.

For each telecommand packet transporting a request to create a housekeeping parameter report structure, the application data field shall have the structure specified in Figure 8-1.

		

		

		

		repeated N1 times

		

		housekeeping parameter report structure ID

		collection interval

		N1

		parameter ID

		NFA

		enumerated

		unsigned integer

		unsigned integer

		enumerated

		unsigned integer

		repeated NFA times

		

		

		repeated N2 times

		super commutated sample repetition number

		N2

		parameter ID

		unsigned integer

		unsigned integer

		enumerated

Figure 8-1 Create a housekeeping parameter report structure

[bookmark: TC_003_002_IF]TC[3,2] create a diagnostic parameter report structure

Each telecommand packet transporting a request to create a diagnostic parameter report structure shall be of message subtype 2.

For the corresponding system requirements, refer to clause 6.1.4.5.

For each telecommand packet transporting a request to create a diagnostic parameter report structure, the application data field shall have the structure specified in Figure 8-2.

		

		

		

		

		

		repeated NFA times...

		

		

		

		repeated N1 times

		

		

		diagnostic parameter report structure ID

		collection interval

		N1

		parameter ID

		NFA

		super commutated sample repetition number

		enumerated

		unsigned integer

		unsigned integer

		enumerated

		unsigned integer

		unsigned integer

		...repeated NFA times

		

		repeated N2 times

		N2

		parameter ID

		unsigned integer

		enumerated

Figure 8-2 Create a diagnostic parameter report structure

[bookmark: TC_003_003_IF]TC[3,3] delete housekeeping parameter report structures

Each telecommand packet transporting a request to delete housekeeping parameter report structures shall be of message subtype 3.

For the corresponding system requirements, refer to clause 6.1.3.6.

For each telecommand packet transporting a request to delete housekeeping parameter report structures, the application data field shall have the structure specified in Figure 8-3.

		

		repeated N times

		N

		housekeeping parameter report structure ID

		unsigned integer

		enumerated

Figure 8-3 Delete housekeeping parameter report structures

[bookmark: TC_003_004_IF]TC[3,4] delete diagnostic parameter report structures

Each telecommand packet transporting a request to delete diagnostic parameter report structures shall be of message subtype 4.

For the corresponding system requirements, refer to clause 6.1.4.6.

For each telecommand packet transporting a request to delete diagnostic parameter report structures, the application data field shall have the structure specified in Figure 8-4.

		

		repeated N times

		N

		diagnostic parameter report structure ID

		unsigned integer

		enumerated

Figure 8-4 Delete diagnostic parameter report structures

[bookmark: TC_003_005_IF]TC[3,5] enable the periodic generation of housekeeping parameter reports

Each telecommand packet transporting a request to enable the periodic generation of housekeeping parameter reports shall be of message subtype 5.

For the corresponding system requirements, refer to clause 6.1.3.3.

For each telecommand packet transporting a request to enable the periodic generation of housekeeping parameter reports, the application data field shall have the structure specified in Figure 8-5.

		

		repeated N times

		N

		housekeeping parameter report structure ID

		unsigned integer

		enumerated

Figure 8-5 Enable the periodic generation of housekeeping parameter reports

[bookmark: TC_003_006_IF]TC[3,6] disable the periodic generation of housekeeping parameter reports

Each telecommand packet transporting a request to disable the periodic generation of housekeeping parameter reports shall be of message subtype 6.

For the corresponding system requirements, refer to clause 6.1.3.4.

For each telecommand packet transporting a request to disable the periodic generation of housekeeping parameter reports, the application data field shall have the structure specified in Figure 8-6.

		

		repeated N times

		N

		housekeeping parameter report structure ID

		unsigned integer

		enumerated

Figure 8-6 Disable the periodic generation of housekeeping parameter reports

[bookmark: TC_003_007_IF]TC[3,7] enable the periodic generation of diagnostic parameter reports

Each telecommand packet transporting a request to enable the periodic generation of diagnostic parameter reports shall be of message subtype 7.

For the corresponding system requirements, refer to clause 6.1.4.3.

For each telecommand packet transporting a request to enable the periodic generation of diagnostic parameter reports, the application data field shall have the structure specified in Figure 8-7.

		

		repeated N times

		N

		diagnostic parameter report structure ID

		unsigned integer

		enumerated

Figure 8-7 Enable the periodic generation of diagnostic parameter reports

[bookmark: TC_003_008_IF]TC[3,8] disable the periodic generation of diagnostic parameter reports

Each telecommand packet transporting a request to disable the periodic generation of diagnostic parameter reports shall be of message subtype 8.

For the corresponding system requirements, refer to clause 6.1.4.4.

For each telecommand packet transporting a request to disable the periodic generation of diagnostic parameter reports, the application data field shall have the structure specified in Figure 8-8.

		

		repeated N times

		N

		diagnostic parameter report structure ID

		unsigned integer

		enumerated

Figure 8-8 Disable the periodic generation of diagnostic parameter reports

[bookmark: TC_003_009_IF]TC[3,9] report housekeeping parameter report structures

Each telecommand packet transporting a request to report housekeeping parameter report structures shall be of message subtype 9.

For the corresponding system requirements, refer to clause 6.1.3.7.

For each telecommand packet transporting a request to report housekeeping parameter report structures, the application data field shall have the structure specified in Figure 8-9.

		

		repeated N times

		N

		housekeeping parameter report structure ID

		unsigned integer

		enumerated

Figure 8-9 Report housekeeping parameter report structures

[bookmark: TM_003_010_IF]TM[3,10] housekeeping parameter report structure report

Each telemetry packet transporting a housekeeping parameter report structure report shall be of message subtype 10.

For the corresponding system requirements, refer to clause 6.1.3.7.

For each telemetry packet transporting a housekeeping parameter report structure report, the source data field shall have the structure specified in Figure 8-10.

		

		

		

		

		repeated N1 times

		housekeeping parameter report structure ID

		periodic generation action status

		collection interval

		N1

		parameter ID

		enumerated

		enumerated

		unsigned integer

		unsigned integer

		enumerated

		

		

optional

		

		

		

		

		repeated NFA times

		

		

		

		repeated N2 times

		NFA

		super commutated sample repetition number

		N2

		parameter ID

		unsigned integer

		unsigned integer

		unsigned integer

		enumerated

Figure 8-10 Housekeeping parameter report structure report

[bookmark: TC_003_011_IF]TC[3,11] report diagnostic parameter report structures

Each telecommand packet transporting a request to report diagnostic parameter report structures shall be of message subtype 11.

For the corresponding system requirements, refer to clause 6.1.4.7.

For each telecommand packet transporting a request to report diagnostic parameter report structures, the application data field shall have the structure specified in Figure 8-11.

		

		repeated N times

		N

		diagnostic parameter report structure ID

		unsigned integer

		enumerated

Figure 8-11 Report diagnostic parameter report structures

[bookmark: TM_003_012_IF]TM[3,12] diagnostic parameter report structure report

Each telemetry packet transporting a diagnostic parameter report structure report shall be of message subtype 12.

For the corresponding system requirements, refer to clause 6.1.4.7.

For each telemetry packet transporting a diagnostic parameter report structure report, the source data field shall have the structure specified in Figure 8-12.

		

		

		

		

		repeated N1 times

		

		diagnostic parameter report structure ID

		periodic generation action status

		collection interval

		N1

		parameter ID

		NFA

		enumerated

		enumerated

		unsigned integer

		unsigned integer

		enumerated

		unsigned integer

		repeated NFA times

		

		

		repeated N2 times

		super commutated sample repetition number

		N2

		parameter ID

		unsigned integer

		unsigned integer

		enumerated

Figure 8-12 Diagnostic parameter report structure report

[bookmark: TM_003_025_IF]TM[3,25] housekeeping parameter report

Each telemetry packet transporting a housekeeping parameter report shall be of message subtype 25.

For the corresponding system requirements, refer to clause 6.1.3.9.

For each telemetry packet transporting a housekeeping parameter report, the source data field shall have the structure specified in Figure 8-13.

		

		repeated deduced number of times

		housekeeping parameter report structure ID

		parameter value

		enumerated

		deduced

Figure 8-13 Housekeeping parameter report

[bookmark: TM_003_026_IF]TM[3,26] diagnostic parameter report

Each telemetry packet transporting a diagnostic parameter report shall be of message subtype 26.

For the corresponding system requirements, refer to clause 6.1.4.9.

For each telemetry packet transporting a diagnostic parameter report, the source data field shall have the structure specified in Figure 8-14.

		

		repeated deduced number of times

		diagnostic parameter report structure ID

		parameter value

		enumerated

		deduced

Figure 8-14 Diagnostic parameter report

[bookmark: TC_003_027_IF]TC[3,27] generate a one shot report for housekeeping parameter report structures

Each telecommand packet transporting a request to generate a one shot report for housekeeping parameter report structures shall be of message subtype 27.

For the corresponding system requirements, refer to clause 6.1.3.9.

For each telecommand packet transporting a request to generate a one shot report for housekeeping parameter report structures, the application data field shall have the structure specified in Figure 8-15.

		

		repeated N times

		N

		housekeeping parameter report structure ID

		unsigned integer

		enumerated

Figure 8-15 Generate a one shot report for housekeeping parameter report structures

[bookmark: TC_003_028_IF]TC[3,28] generate a one shot report for diagnostic parameter report structures

Each telecommand packet transporting a request to generate a one shot report for diagnostic parameter report structures shall be of message subtype 28.

For the corresponding system requirements, refer to clause 6.1.4.9.

For each telecommand packet transporting a request to generate a one shot report for diagnostic parameter report structures, the application data field shall have the structure specified in Figure 8-16.

		

		repeated N times

		N

		diagnostic parameter report structure ID

		unsigned integer

		enumerated

Figure 8-16 Generate a one shot report for diagnostic parameter report structures

[bookmark: TC_003_029_IF]TC[3,29] append parameters to a housekeeping parameter report structure

Each telecommand packet transporting a request to append parameters to a housekeeping parameter report structure shall be of message subtype 29.

For the corresponding system requirements, refer to clause 6.1.3.8.

For each telecommand packet transporting a request to append parameters to a housekeeping parameter report structure, the application data field shall have the structure specified in Figure 8-17.

		

		

		

		

		repeated NFA times...

		

		

		repeated N1 times

		

		

		housekeeping parameter report structure ID

		N1

		parameter ID

		NFA

		super commutated sample repetition number

		enumerated

		unsigned integer

		enumerated

		unsigned integer

		unsigned integer

		...repeated NFA times

		

		repeated N2 times

		N2

		parameter ID

		unsigned integer

		enumerated

Figure 8-17 Append parameters to a housekeeping parameter report structure

[bookmark: TC_003_030_IF]TC[3,30] append parameters to a diagnostic parameter report structure

Each telecommand packet transporting a request to append parameters to a diagnostic parameter report structure shall be of message subtype 30.

For the corresponding system requirements, refer to clause 6.1.4.8.

For each telecommand packet transporting a request to append parameters to a diagnostic parameter report structure, the application data field shall have the structure specified in Figure 8-18.

		

		

		

		

		repeated NFA times...

		

		

		repeated N1 times

		

		

		diagnostic parameter report structure ID

		N1

		parameter ID

		NFA

		super commutated sample repetition number

		enumerated

		unsigned integer

		enumerated

		unsigned integer

		unsigned integer

		...repeated NFA times

		

		repeated N2 times

		N2

		parameter ID

		unsigned integer

		enumerated

Figure 8-18 Append parameters to a diagnostic parameter report structure

[bookmark: TC_003_031_IF]TC[3,31] modify the collection interval of housekeeping parameter report structures

Each telecommand packet transporting a request to modify the collection interval of housekeeping parameter report structures shall be of message subtype 31.

For the corresponding system requirements, refer to clause 6.1.3.10.

For each telecommand packet transporting a request to modify the collection interval of housekeeping parameter report structures, the application data field shall have the structure specified in Figure 8-19.

		

		repeated N times

		N

		housekeeping parameter report structure ID

		collection interval

		unsigned integer

		enumerated

		unsigned integer

Figure 8-19 Modify the collection interval of housekeeping parameter report structures

[bookmark: TC_003_032_IF]TC[3,32] modify the collection interval of diagnostic parameter report structures

Each telecommand packet transporting a request to modify the collection interval of diagnostic parameter report structures shall be of message subtype 32.

For the corresponding system requirements, refer to clause 6.1.4.10.

For each telecommand packet transporting a request to modify the collection interval of diagnostic parameter report structures, the application data field shall have the structure specified in Figure 8-20.

		

		repeated N times

		N

		diagnostic parameter report structure ID

		collection interval

		unsigned integer

		enumerated

		unsigned integer

Figure 8-20 Modify the collection interval of diagnostic parameter report structures

[bookmark: TC_003_033_IF]TC[3,33] report the periodic generation properties of housekeeping parameter report structures

Each telecommand packet transporting a request to report the periodic generation properties of housekeeping parameter report structures shall be of message subtype 33.

For the corresponding system requirements, refer to clause 6.1.3.11.

For each telecommand packet transporting a request to report the periodic generation properties of housekeeping parameter report structures, the application data field shall have the structure specified in Figure 8-21.

		

		repeated N times

		N

		housekeeping parameter report structure ID

		unsigned integer

		enumerated

Figure 8-21 Report the periodic generation properties of housekeeping parameter report structures

[bookmark: TC_003_034_IF]TC[3,34] report the periodic generation properties of diagnostic parameter report structures

Each telecommand packet transporting a request to report the periodic generation properties of diagnostic parameter report structures shall be of message subtype 34.

For the corresponding system requirements, refer to clause 6.1.4.11.

For each telecommand packet transporting a request to report the periodic generation properties of diagnostic parameter report structures, the application data field shall have the structure specified in Figure 8-22.

		

		repeated N times

		N

		diagnostic parameter report structure ID

		unsigned integer

		enumerated

Figure 8-22 Report the periodic generation properties of diagnostic parameter report structures

[bookmark: TM_003_035_IF]TM[3,35] housekeeping parameter report periodic generation properties report

Each telemetry packet transporting a housekeeping parameter report periodic generation properties report shall be of message subtype 35.

For the corresponding system requirements, refer to clause 6.1.3.11.

For each telemetry packet transporting a housekeeping parameter report periodic generation properties report, the source data field shall have the structure specified in Figure 8-23.

		

		repeated N times

		N

		housekeeping parameter report structure ID

		periodic generation action status

		collection interval

		unsigned integer

		enumerated

		enumerated

		unsigned integer

Figure 8-23 Housekeeping parameter report periodic generation properties report

[bookmark: TM_003_036_IF]TM[3,36] diagnostic parameter report periodic generation properties report

Each telemetry packet transporting a diagnostic parameter report periodic generation properties report shall be of message subtype 36.

For the corresponding system requirements, refer to clause 6.1.4.11.

For each telemetry packet transporting a diagnostic parameter report periodic generation properties report, the source data field shall have the structure specified in Figure 8-24.

		

		repeated N times

		N

		diagnostic parameter report structure ID

		periodic generation action status

		collection interval

		unsigned integer

		enumerated

		enumerated

		unsigned integer

Figure 8-24 Diagnostic parameter report periodic generation properties report

[bookmark: TC_003_037_IF]TC[3,37] apply parameter functional reporting configurations

Each telecommand packet transporting a request to apply parameter functional reporting configurations shall be of message subtype 37.

For the corresponding system requirements, refer to clause 6.1.5.2.

For each telecommand packet transporting a request to apply parameter functional reporting configurations, the application data field shall have the structure specified in Figure 8-25.

		

		

		repeated N times

		configuration execution flag

		N

		parameter functional reporting definition ID

		enumerated

		unsigned integer

		enumerated

Figure 8-25 Apply parameter functional reporting configurations

For the configuration execution flag values, see requirement 8.1.3a.

[bookmark: TC_003_038_IF]TC[3,38] create a parameter functional reporting definition

Each telecommand packet transporting a request to create a parameter functional reporting definition shall be of message subtype 38.

For the corresponding system requirements, refer to clause 6.1.5.3.

For each telecommand packet transporting a request to create a parameter functional reporting definition, the application data field shall have the structure specified in Figure 8-26.

		

		

		repeated N1 times...

		

		

		

		

		repeated N2 times...

		parameter functional definition ID

		N1

		application process ID

		N2

		parameter report structure type

		parameter report structure ID

		enumerated

		unsigned integer

		enumerated

		unsigned integer

		enumerated

		enumerated

		

		

optional

		

		

		

		...repeated N1 times

		...repeated N2 times

		periodic generation action status

		collection interval

		enumerated

		unsigned integer

Figure 8-26 Create a parameter functional reporting definition

For the parameter report structure type values, see requirement 8.1.3b.

[bookmark: TC_003_039_IF]TC[3,39] delete parameter functional reporting definitions

Each telecommand packet transporting a request to delete parameter functional reporting definitions shall be of message subtype 39.

For the corresponding system requirements, refer to clause 6.1.5.4.

For each telecommand packet transporting a request to delete parameter functional reporting definitions, the application data field shall have the structure specified in Figure 8-27.

		

		repeated N times

		N

		parameter functional reporting definition ID

		unsigned integer

		enumerated

Figure 8-27 Delete parameter functional reporting definitions

[bookmark: TC_003_040_IF]TC[3,40] report parameter functional reporting definitions

Each telecommand packet transporting a request to report parameter functional reporting definitions shall be of message subtype 40.

For the corresponding system requirements, refer to clause 6.1.5.5.

For each telecommand packet transporting a request to report parameter functional reporting definitions, the application data field shall have the structure specified in Figure 8-28.

		

		repeated N times

		N

		parameter functional reporting definition ID

		unsigned integer

		enumerated

Figure 8-28 Report parameter functional reporting definitions

[bookmark: TM_003_041_IF]TM[3,41] parameter functional reporting definition report

Each telemetry packet transporting a parameter functional reporting definition report shall be of message subtype 41.

For the corresponding system requirements, refer to clause 6.1.5.5.

For each telemetry packet transporting a parameter functional reporting definition report, the source data field shall have the structure specified in Figure 8-29.

		

		

		repeated N1 times...

		

		

		

		

		repeated N2 times...

		parameter functional reporting definition ID

		N1

		application process ID

		N2

		parameter report structure type

		parameter report structure ID

		enumerated

		unsigned integer

		enumerated

		unsigned integer

		enumerated

		enumerated

		

		

optional

		

		

		

		...repeated N1 times

		...repeated N2 times

		periodic generation action status

		collection interval

		enumerated

		unsigned integer

Figure 8-29 Parameter functional reporting definition report

For the parameter report structure type values, see requirement 8.1.3b.

[bookmark: TC_003_042_IF]TC[3,42] add parameter report definitions to a parameter functional reporting definition

Each telecommand packet transporting a request to add parameter report definitions to a parameter functional reporting definition shall be of message subtype 42.

For the corresponding system requirements, refer to clause 6.1.5.6.

For each telecommand packet transporting a request to add parameter report definitions to a parameter functional reporting definition, the application data field shall have the structure specified in Figure 8-30.

		

		

		repeated N1 times...

		

		

		

		

		repeated N2 times...

		parameter functional reporting definition ID

		N1

		application process ID

		N2

		parameter report structure type

		parameter report structure ID

		enumerated

		unsigned integer

		enumerated

		unsigned integer

		enumerated

		enumerated

		

		

optional

		

		

		

		...repeated N1 times

		...repeated N2 times

		periodic generation action status

		collection interval

		enumerated

		unsigned integer

Figure 8-30 Add parameter report definitions to a parameter functional reporting definition

For the parameter report structure type values, see requirement 8.1.3b.

[bookmark: TC_003_043_IF]TC[3,43] remove parameter report definitions from a parameter functional reporting definition

Each telecommand packet transporting a request to remove parameter report definitions from a parameter functional reporting definition shall be of message subtype 43.

For the corresponding system requirements, refer to clause 6.1.5.7.

For each telecommand packet transporting a request to remove parameter report definitions from a parameter functional reporting definition, the application data field shall have the structure specified in Figure 8-31.

		

		

		repeated N1 times

		

		

		

		

		repeated N2 times

		parameter functional reporting definition ID

		N1

		application process ID

		N2

		parameter report structure type

		parameter report structure ID

		enumerated

		unsigned integer

		enumerated

		unsigned integer

		enumerated

		enumerated

		

		

optional

		

		

		

Figure 8-31 Remove parameter report definitions from a parameter functional reporting definition

For the parameter report structure type values, see requirement 8.1.3b.

[bookmark: TC_003_044_IF]TC[3,44] modify the periodic generation properties of parameter report definitions of a parameter functional reporting definition

Each telecommand packet transporting a request to modify the periodic generation properties of parameter report definitions of a parameter functional reporting definition shall be of message subtype 44.

For the corresponding system requirements, refer to clause 6.1.5.8.

For each telecommand packet transporting a request to modify the periodic generation properties of parameter report definitions of a parameter functional reporting definition, the application data field shall have the structure specified in Figure 8-32.

		

		

		repeated N1 times...

		

		

		

		

		repeated N2 times...

		parameter functional reporting definition ID

		N1

		application process ID

		N2

		parameter report structure type

		parameter report structure ID

		enumerated

		unsigned integer

		enumerated

		unsigned integer

		enumerated

		enumerated

		

		

optional

		

		

		

		...repeated N1 times

		...repeated N2 times

		periodic generation action status

		collection interval

		enumerated

		unsigned integer

Figure 8-32 Modify the periodic generation properties of parameter report definitions of a parameter functional reporting definition

For the parameter report structure type values, see requirement 8.1.3b.

[bookmark: TC_003_145_IF]TC[3,145] Define Housekeeping Compression Configuration

Each telecommand packet transporting a request to Define Housekeeping Compression Configuration shall be of message subtype 145.

For the corresponding system requirements, refer to clause 6.1.6.3.

For each telecommand packet transporting a request to Define Housekeeping Compression Configuration, the application data field shall have the structure specified in Figure 8-33.

		SID

		configuration version ID

		default mode

		secondary mode

		enumerated

		enumerated

		enumerated

		enumerated

		secondary mode frequency

		maximum compressed size

		unsigned integer

		unsigned integer

Figure 8-33 Define Housekeeping Compression Configuration

[bookmark: TC_003_146_IF]TC[3,146] Define Housekeeping Compression Reference Packet

Each telecommand packet transporting a request to Define Housekeeping Compression Reference Packet shall be of message subtype 146.

For the corresponding system requirements, refer to clause 6.1.6.4.

For each telecommand packet transporting a request to Define Housekeeping Compression Reference Packet , the application data field shall have the structure specified in Figure 8-34.

		

		

		

		repeated LEN times

		SID

		offset

		len

		data

		enumerated

		unsigned integer

		unsigned integer

		unsigned integer

Figure 8-34 Define Housekeeping Compression Reference Packet

[bookmark: TC_003_147_IF]TC[3,147] Define housekeeping compression packet mask

Each telecommand packet transporting a request to Define housekeeping compression packet mask shall be of message subtype 147.

For the corresponding system requirements, refer to clause 6.1.6.5.

For each telecommand packet transporting a request to Define housekeeping compression packet mask, the application data field shall have the structure specified in Figure 8-35.

		

		

		

		

		repeated LEN times

		SID

		mode

		offset

		len

		data

		enumerated

		enumerated

		unsigned integer

		unsigned integer

		unsigned integer

Figure 8-35 Define housekeeping compression packet mask

[bookmark: TC_003_148_IF]TC[3,148] Delete Housekeeping Compression Configuration

Each telecommand packet transporting a request to Delete Housekeeping Compression Configuration shall be of message subtype 148.

For the corresponding system requirements, refer to clause 6.1.6.6.

For each telecommand packet transporting a request to Delete Housekeeping Compression Configuration , the application data field shall have the structure specified in Figure 8-36.

		

		repeated N SID times

		N SID

		SID

		unsigned integer

		enumerated

Figure 8-36 Delete Housekeeping Compression Configuration

[bookmark: TC_003_149_IF]TC[3,149] Enable Housekeeping Compression

Each telecommand packet transporting a request to Enable Housekeeping Compression shall be of message subtype 149.

For the corresponding system requirements, refer to clause 6.1.6.7.

For each telecommand packet transporting a request to Enable Housekeeping Compression, the application data field shall have the structure specified in Figure 8-37.

		

		repeated N SID times

		N SID

		SID

		unsigned integer

		enumerated

Figure 8-37 Enable Housekeeping Compression

[bookmark: TC_003_150_IF]TC[3,150] Disable Housekeeping Compression

Each telecommand packet transporting a request to Disable Housekeeping Compression shall be of message subtype 150.

For the corresponding system requirements, refer to clause 6.1.6.8.

For each telecommand packet transporting a request to Disable Housekeeping Compression, the application data field shall have the structure specified in Figure 8-38.

		

		repeated N SID times

		N SID

		SID

		unsigned integer

		enumerated

Figure 8-38 Disable Housekeeping Compression

[bookmark: TC_003_151_IF]TC[3,151] Generate new housekeeping compression mask

Each telecommand packet transporting a request to Generate new housekeeping compression mask shall be of message subtype 151.

For the corresponding system requirements, refer to clause 6.1.6.9.

For each telecommand packet transporting a request to Generate new housekeeping compression mask, the application data field shall have the structure specified in Figure 8-39.

		SID

		configuration version ID

		mode

		enumerated

		enumerated

		enumerated

Figure 8-39 Generate new housekeeping compression mask

[bookmark: TM_003_152_IF]TM[3,152] Send On-board generated housekeeping compression mask

Each telemetry packet transporting a Send On-board generated housekeeping compression mask shall be of message subtype 152.

For the corresponding system requirements, refer to clause 6.1.6.10.

For each telemetry packet transporting a Send On-board generated housekeeping compression mask, the source data field shall have the structure specified in Figure 8-40.

		SID

		configuration version ID

		mode

		data

		enumerated

		enumerated

		enumerated

		unsigned integer

Figure 8-40 Send On-board generated housekeeping compression mask

[bookmark: TM_003_154_IF]TM[3,154] Send Compressed housekeeping telemetry packet

Each telemetry packet transporting a Send Compressed housekeeping telemetry packet shall be of message subtype 154.

For the corresponding system requirements, refer to clause 6.1.6.2.

For each telemetry packet transporting a Send Compressed housekeeping telemetry packet, the source data field shall have the structure specified in Figure 8-41.

		SID

		configuration version ID

		mode

		original checksum

		data

		enumerated

		enumerated

		enumerated

		unsigned integer

		unsigned integer

Figure 8-41 Send Compressed housekeeping telemetry packet

[bookmark: _Toc9958317]Enumeration

The values of the configuration execution flag shall be specified in Table 8-1.

Table 8-1 Service 3 configuration execution flag

		engineering value

		raw value

		non-exclusive

		0

		exclusive

		1

The values of the parameter report structure type shall be specified in Table 8-2.

Table 8-2 Service 3 parameter report structure type

		engineering value

		raw value

		housekeeping

		25

		diagnostic

		26

[bookmark: ST129_IF][bookmark: _Toc9958318]EXT[129] Reaction wheels management

[bookmark: _Toc9958319]General

Each packet transporting a Reaction wheels management message shall be of service type 129.

[bookmark: _Toc9958320]Requests and reports

[bookmark: TC_129_001_IF]TC[129,1] activate one reaction wheel

Each telecommand packet transporting a request to activate one reaction wheel shall be of message subtype 1.

For the corresponding system requirements, refer to clause 6.2.3.2.

For each telecommand packet transporting a request to activate one reaction wheel, the application data field shall have the structure specified in Figure 8-42.

		reaction wheel ID

		enumerated

Figure 8-42 Activate one reaction wheel

[bookmark: TC_129_002_IF]TC[129,2] activate three reaction wheels

Each telecommand packet transporting a request to activate three reaction wheels shall be of message subtype 2.

For the corresponding system requirements, refer to clause 6.2.3.4.

For each telecommand packet transporting a request to activate three reaction wheels, the application data field shall be omitted.

[bookmark: TC_129_003_IF]TC[129,3] activate four reaction wheels

Each telecommand packet transporting a request to activate four reaction wheels shall be of message subtype 3.

For the corresponding system requirements, refer to clause 6.2.3.5.

For each telecommand packet transporting a request to activate four reaction wheels, the application data field shall be omitted.

[bookmark: TC_129_004_IF]TC[129,4] deactivate one reaction wheel

Each telecommand packet transporting a request to deactivate one reaction wheel shall be of message subtype 4.

For the corresponding system requirements, refer to clause 6.2.3.3.

For each telecommand packet transporting a request to deactivate one reaction wheel, the application data field shall have the structure specified in Figure 8-43.

		reaction wheel ID

		enumerated

Figure 8-43 Deactivate one reaction wheel

[bookmark: TC_129_005_IF]TC[129,5] deactivate all reaction wheels

Each telecommand packet transporting a request to deactivate all reaction wheels shall be of message subtype 5.

For the corresponding system requirements, refer to clause 6.2.3.6.

For each telecommand packet transporting a request to deactivate all reaction wheels, the application data field shall be omitted.

[bookmark: TC_129_011_IF]TC[129,11] invalidate reaction wheel

Each telecommand packet transporting a request to invalidate reaction wheel shall be of message subtype 11.

For the corresponding system requirements, refer to clause 6.2.4.2.

For each telecommand packet transporting a request to invalidate reaction wheel, the application data field shall have the structure specified in Figure 8-44.

		reaction wheel ID

		enumerated

Figure 8-44 Invalidate reaction wheel

[bookmark: TC_129_012_IF]TC[129,12] power-cycle reaction wheel

Each telecommand packet transporting a request to power-cycle reaction wheel shall be of message subtype 12.

For the corresponding system requirements, refer to clause 6.2.4.3.

For each telecommand packet transporting a request to power-cycle reaction wheel, the application data field shall have the structure specified in Figure 8-45.

		reaction wheel ID

		enumerated

Figure 8-45 Power-cycle reaction wheel

[bookmark: TC_129_021_IF]TC[129,21] enable/disable rate sensor

Each telecommand packet transporting a request to enable/disable rate sensor shall be of message subtype 21.

For the corresponding system requirements, refer to clause 6.2.5.2.

For each telecommand packet transporting a request to enable/disable rate sensor, the application data field shall have the structure specified in Figure 8-46.

		reaction wheel ID

		rate sensor state

		enumerated

		enumerated

Figure 8-46 Enable/disable rate sensor

[bookmark: TC_129_022_IF]TC[129,22] invalidate rate sensor

Each telecommand packet transporting a request to invalidate rate sensor shall be of message subtype 22.

For the corresponding system requirements, refer to clause 6.2.5.3.

For each telecommand packet transporting a request to invalidate rate sensor, the application data field shall have the structure specified in Figure 8-47.

		reaction wheel ID

		enumerated

Figure 8-47 Invalidate rate sensor

[bookmark: TC_129_031_IF]TC[129,31] Send direct command to reaction wheel

Each telecommand packet transporting a request to Send direct command to reaction wheel shall be of message subtype 31.

For the corresponding system requirements, refer to clause 6.2.6.2.

For each telecommand packet transporting a request to Send direct command to reaction wheel, the application data field shall have the structure specified in Figure 8-48.

		

		

		repeated length times

		reaction wheel ID

		length

		data

		enumerated

		unsigned integer

		unsigned integer

Figure 8-48 Send direct command to reaction wheel

[bookmark: TM_129_032_IF]TM[129,32] generate RWL report

Each telemetry packet transporting a generate RWL report shall be of message subtype 32.

For the corresponding system requirements, refer to clause 6.2.6.3.

For each telemetry packet transporting a generate RWL report, the source data field shall have the structure specified in Figure 8-49.

		

		repeated N times

		N

		data

		unsigned integer

		unsigned integer

Figure 8-49 Generate RWL report

[bookmark: _Ref371328203][bookmark: FM_CPDU_AnnexA][bookmark: _Toc447218077][bookmark: _Toc9958321]
Command Pulse Distribution Unit

[bookmark: _Toc447218078][bookmark: _Toc9958322]Scope

A CPDU is a simple on-board unit designed to provide ground with direct access to equipment. For example, such direct access is used during contingency to reset an S-band transponder or a sensor.

Each CPDU is logically handled as an on-board application process, i.e. there is an application process identifier that represents that CPDU exclusively.

Each CPDU can be:

directly accessed from the ground by addressing:

a virtual channel that logically links the ground to one or more multiplexer access points (MAPs), and

a multiplexer access point that is physically linked to that CPDU;

indirectly accessed by use of an on-board application process that hosts a device access subservice, refer to the request to distribute CPDU commands specified in clause Error! Reference source not found.

Each CPDU has a number of addressable outputs. A subset of these addressable outputs are equipped with output lines that can be physically connected to an equipment.

Commanding a CPDU consists of issuing requests that contain CPDU command pulse instructions, each one identifying the CPDU addressable output and specifying the duration of the pulse to generate.

[bookmark: _Toc447218079][bookmark: _Toc9958323]System requirements

[bookmark: _Ref371334449][bookmark: SO_CPDU][bookmark: _Ref435982894][bookmark: _Toc9958324]CPDU

0. [bookmark: SO_CPDUPulseDurationUnit]For each CPDU, the pulse duration unit used by that CPDU shall be declared when specifying that CPDU.

Each pulse duration unit shall be greater than or equal to 10 ms, and less than or equal to 15 ms.

The number of addressable outputs exposed by each CPDU shall be declared when specifying that CPDU.

This Standard supports CPDUs that expose up to addressable outputs. The CPDU suppliers can equip a subset of the addressable outputs with output lines. These equipped addressable outputs are available for being physically connected.

[bookmark: ST002_CPDUOutputLineID]Each CPDU addressable output shall be uniquely identified by an enumerated value represented by an unsigned integer that is greater than or equal to 0, and less than .

The list of CPDU addressable outputs that are equipped with output lines shall be declared when specifying that CPDU.

These outputs are named "CPDU equipped addressable outputs".

For each CPDU, the maximum number of command pulse instructions contained within a CPDU request shall be declared when specifying that CPDU.

The maximum number of command pulse instructions is constrained by the size of the TC segment, refer to ECSS-E-ST-50-04.

[bookmark: SO_CPDUPulseInstructionsMaxNumber]For each CPDU, the maximum number of command pulse instructions contained within a CPDU request that is at least 12 and at most 504 shall be declared when specifying that CPDU.

This maximum number of command pulse instructions determines the maximum size of the telecommand packet used to transport the related CPDU request. That maximum telecommand packet size is constrained by the maximum telecommand segment size, refer to ECSS-E-ST-50-04.

[bookmark: _Ref424488875][bookmark: _Toc9958325]Accessibility

0. The list of CPDUs available on-board shall be declared when specifying the spacecraft architecture.

[bookmark: SO_CPDU_APID]For each CPDU, the application process identifier used to refer to that CPDU shall be declared when specifying the spacecraft architecture.

For each CPDU, the list of multiplexer access points physically linked to that CPDU shall be declared when specifying the spacecraft architecture.

0. The multiplexer access point identifier that equals to 0 is usually associated to a CPDU connected to a TC decoder without cross-coupling.

0. See also clause 7.1.2.3.

For each CPDU and associated multiplexer access point, the virtual channel that is used to carry the associated TC segments shall be declared when specifying the spacecraft architecture.

0. For TC segments, see ECSS-E-ST-50-04.

0. The telecommand link to a CPDU is uniquely identified by the combination of the virtual channel identifier and the multiplexed access point identifier.

Each CPDU equipped addressable output that is physically connected shall be declared when specifying the spacecraft architecture.

These outputs are named "CPDU physically connected outputs".

For each CPDU physically connected output, the minimum pulse duration and the maximum pulse duration supported by that output shall be declared when specifying the spacecraft architecture.

These minimum and maximum pulse durations are constrained by the characteristic of the equipment that is physically connected.

[bookmark: _Ref371332580][bookmark: _Toc9958326]CPDU request

0. Each CPDU request shall contain one or more command pulse instructions.

[bookmark: _Ref371332493]Each command pulse instruction shall contain:

the identifier of a CPDU physically connected output;

the duration exponential value used to calculate the duration of the command pulse to emit on that output.

0. For item 1, refer to requirements in clause 9.2.1.

0. For item 2, the pulse duration unit is specified in requirement 9.2.1a.

0. The duration exponential value in a command pulse instruction shall be an unsigned integer greater than or equal to 0, and less than or equal to 7.

When the CPDU executes a command pulse instruction, it generates a pulse on the specified output line of a duration equal to:

[bookmark: _Toc447218080][bookmark: _Toc9958327]Interface requirements

[bookmark: _Ref386616986][bookmark: _Toc9958328]CPDU request

0. Each telecommand packet transporting a CPDU request shall be a CCSDS space packet that contains:

13. a packet primary header with:

0. a packet version number set to 0,

0. a packet type set to 1,

0. a secondary header flag set to 0,

0. the application process identifier of the CPDU addressed by that request,

0. the 2 bits of the sequence flags set to "11",

0. the packet sequence count or packet name set to 0,

0. the packet data length of the telecommand packet;

13. a packet data field with:

1. no packet secondary header,

1. an application data field,

1. no spare field,

1. a packet error control field that is a 16-bit CRC identical to the one used in the frame error control field of the telecommand protocol of the space data link.

0. The structure of the CCSDS space packet is described in clause 7.4.

0. For item 2(d), for the frame error control field of the telecommand protocol of the space data link, refer to ECSS-E-ST-50-04.

For each telecommand packet transporting a CPDU request, the application data field shall have the structure specified in Figure 91.

		repeated n times

with

		output line ID

		reserved

		duration exponential value

		enumerated

(12 bits)

		bit-string

(1 bit)

		enumerated

(3 bits)

		NOTE	The CPDU maximum number of instructions is defined in requirement 9.2.1g.

[bookmark: _Ref447211944][bookmark: _Ref371334545]Figure 91 CPDU request

[bookmark: _Toc447218081] (informative)
IEEE and MIL-STD real formats

[bookmark: _Ref304896097][bookmark: _Toc447218082]IEEE standard format

[bookmark: _Toc447218083]General

The important features of the IEEE standard simple precision and double precision formats (refer to "IEEE 754 Standard for binary floating-point arithmetic" (Reference [7]) are provided below.

Each format permits the representation of the numerical values of the form:

where:

 means

 	=

 	= any integer between and , inclusive

 	=

 	= number of significant bits (precision)

Each format also permits the representation of two infinities, and and special values which are not numbers. For both formats, the encoding of the real number values use 3 fields as follows:

the sign field, on 1 bit, that states whether:

the value is positive, i.e. sign = 0, or

the value is negative, i.e. sign = 1;

 the exponent field:

on 8 bits for single-precision real values, or

on 11 bits for double-precision real values

the fraction field, i.e. a bit-string containing the value with:

 for single-precision real values, or

 for double-precision real values.

[bookmark: _Toc447218084]Single-precision

The encoded value of a single-precision real parameter has the structure defined in Figure A-1 .

		sign

		exponent

		fraction

		1 bit

		8 bits

		23 bits

[bookmark: _Ref381611041][bookmark: _Toc9958329]Single-precision real encoded value structure

The encoded value structure of a singleprecision real parameter provides the capability to represent the values reported in Table A-1 .

[bookmark: _Ref381611042][bookmark: _Toc9958330]Single-precision real parameter encoded values

		

		value

		if exponent = 255 and fraction <> 0

		not a number

		if exponent = 255 and fraction = 0

		

		if 0 < exponent < 255

		

		if exponent = 0 and fraction <> 0

		

		if exponent = 0 and fraction = 0

		

In the cases where and , the values are said to be denormalized.

The range of possible values and precision for a simple-precision real parameter are as follows:

[bookmark: _Toc447218085]Double-precision

The encoded value of a double-precision real parameter has the structure defined in Figure A-2 .

		sign

		exponent

		fraction

		1 bit

		11 bits

		52 bits

[bookmark: _Ref381611050][bookmark: _Toc9958331]Double-precision real parameter encoded value structure

The encoded value structure of a double-precision real parameter provides the capability to represent the values reported in Table A-2 .

[bookmark: _Ref381611060][bookmark: _Toc9958332]Double-precision real parameter encoded values

		

		value

		if exponent = 2 047 and fraction <> 0

		not a number

		if exponent = 2 047 and fraction = 0

		

		if 0 < exponent < 2 047

		

		if exponent = 0 and fraction <> 0

		

		if exponent = 0 and fraction = 0

		

In the cases where and , the values are said to be denormalized.

The range of possible values and precision for a double-precision real parameter are as follows:

[bookmark: _Ref382668622][bookmark: _Toc447218086]United States Air Force military standard format

[bookmark: _Toc447218087]General

The important features of the United States Air Force military standard single-precision floating-point data and extended-precision floating-point data formats (refer to "Military Standard SixteenBit Computer Instruction Set Architecture" MIL-STD-1750a, 2nd July 1980 (Reference [8]) are provided below.

Floating-point numbers are represented as a fractional mantissa times 2 raised to the power of the exponent. All floating-point numbers are assumed normalized or floating-point zero at the beginning of a floating-point operation and the results of all floating-point operations are normalized (a normalized floating-point number has the sign of the mantissa and the next bit of opposite value) or floating-point zero. A floating-point zero is defined as , that is, a zero mantissa and a zero exponent (). An extended floating-point zero is defined as , that is, a zero mantissa and a zero exponent.

For both floating-point and extended floating-point numbers, an overflow is defined as an exponent overflow and an underflow is defined as an exponent underflow.

[bookmark: _Toc447218088]Simple-precision

As shown in Figure A-3 , simple-precision floating-point data are represented as a 32-bit quantity consisting of a 24-bit 2’s complement mantissa and an 8-bit 2/s complement exponent.

		MSB

		

		

		LSB

		MSB

		

		LSB

		sign

		mantissa

		exponent

		0

		1

		

		23

		24

		

		31

[bookmark: _Ref381619363][bookmark: _Toc9958333]Single-precision floating-point data structure

Some examples of the machine representation for 32bit floating-point numbers are provided in Table A-3 .

[bookmark: _Ref381619371][bookmark: _Toc9958334]Some examples of 32-bit floating-point numbers

		decimal number

		hexadecimal notation

		

		7FFF FFFF

		

		4000 007F

		

		5000 0004

		

		4000 0001

		

		4000 0000

		

		4000 00FF

		

		4000 0080

		

		0000 0000

		

		8000 0000

		

		BFFF FF80

		

		9FFF FF04

[bookmark: _Toc447218089]Extended

As shown in Figure A-4 , extended floating-point data are represented as a 48bit quantity consisting of a 40-bit 2’s complement mantissa and an 8-bit 2’s complement exponent. The exponent bits 24 to 31 lie between the split mantissa bits 0 to 23 and bits 32 to 47. The most significant bit of the mantissa is the sign bit 0, and the least significant bit of the mantissa is bit 47.

		(sign)

		mantissa MSB

		exponent

		mantissa LSB

		0

		1

		

		23

		24

		

		31

		32

		

		47

[bookmark: _Ref381619386][bookmark: _Toc9958335]extended floating-point data structure

Some examples of the machine representation of 48bit extended floating-point numbers are provided in Table A-4 .

[bookmark: _Ref381619396][bookmark: _Toc9958336]Some examples of 48-bit extended floating-point numbers

		Decimal Number

		Mantissa (MSB)

		Exp

		Mantissa (LSB)

		

		400000

		7F

		0000

		

		400000

		00

		0000

		

		400000

		FF

		0000

		

		400000

		80

		0000

		

		800000

		7F

		0000

		

		800000

		00

		0000

		

		800000

		FF

		0000

		

		800000

		80

		0000

		

		000000

		00

		0000

		

		A00000

		FF

		0000

[bookmark: _Toc447218090] (informative)
CRC and ISO checksum

0. [bookmark: _Ref355172301][bookmark: _Ref303264657][bookmark: _Toc447218091]The cyclic redundancy code (CRC)

[bookmark: _Toc447218092]General

The packet error control field provides the capability for detecting data corruption introduced into a telemetry packet or a telecommand packet by the lower layers during the transmission, intermediate processing or storage of the packet. The Cyclic Redundancy Code (CRC), also known as the cyclic redundancy check, is an error detecting algorithm that uses the polynomial division to determine the value of the packet error control field.

The encoding/decoding procedure, which is described in detail in the following clauses, produces a 16-bit Packet Check Sequence (PCS) that is placed in the packet error control field. The algorithm used is also known under the name CRC-16-CCITT (See ITU-T V.41). The basic idea behind the CRC-16-CCITT is to treat the entire data packet proper as a binary number, which both the sender and receiver divide using the same divisor. The quotient is discarded. The remainder forms the 16-bit PCS that is placed in the packet error control field. The CRC-16-CCITT uses the following generator polynomial (G):

G(x) = x16 + x12 + x5 + 1

where the + represents the module 2 addition operator. That is, the polynomial expression is manipulated using modulo 2.

In the algorithm used, both encoder and decoder are initialized to the "all-ones" state for each packet.

The PCS generation is performed over the data that covers the entire packet including the packet header but excluding the packet error control field.

The error detection properties of the CRC can be expressed as follows:

The proportion of all errors in the data that are not detected is approximately 1,53 × 10-5.

An error in the data affecting an odd number of bits is always detected.

An error in the data affecting exactly two bits, no more than 65 535 bits apart, is always detected.

If an error in the data affects an even number of bits (greater than or equal to 4), the probability that the error is not detected is approximately 3 × 10-5 for a data length of 4 096 octets. The probability increases slightly for larger data lengths and decreases slightly for smaller data lengths.

A single error burst spanning 16 bits or less of the data is always detected. Not all intermediate bits in the error burst span need be affected.

This code is intended only for error detection purposes and no attempt should be made to utilize it for correction.

[bookmark: _Toc447218093]Symbols and conventions

The symbols and conventions defined in Table B-1 are used.

[bookmark: _Ref381619987][bookmark: _Toc9958337]CRC symbols and conventions

		symbol

		meaning

		n

		The number of bits in the data packet proper.

		M(x)

		The (n-16)-bit message to be encoded, expressed as a polynomial with binary coefficients.

		L(x)

		The pre-setting polynomial. This pre-setting polynomial is given by:

		G(x)

		The generating polynomial given by:

		+

		The modulo 2 addition operator (exclusive-or)

		

		The received block in polynomial form.

		S(x)

		The syndrome polynomial, which is zero if no error has been detected.

[bookmark: _Toc447218094]Encoding procedure

The encoding procedure accepts the (n-16)-bits message and generates a 16-bit-Packet Check Sequence (PCS) as follows:

The encoding procedure differs from that of a conventional cyclic block encoding operation in that the term has the effect of pre-setting the shift register to an "all ones" state (rather than a conventional all zeros state) prior to encoding.

[bookmark: _Toc447218095]Decoding procedure

The error detection syndrome, S(x) is given by:

If S(x) = 0 then no error is detected.

[bookmark: _Toc447218096]Verification of compliance

The binary sequences defined in Table B-2 are provided to the designers of packet systems as samples for early testing, so that they can verify the correctness of their CRC error detection implementation.

All data are given in hexadecimal notation. For a given field (data or CRC) the leftmost hexadecimal character contains the most significant bit.

[bookmark: _Ref381620335][bookmark: _Toc9958338]Verification of CRC compliance

		data

		CRC

		00 00

		1D 0F

		00 00 00

		CC 9C

		AB CD EF 01

		04 A2

		14 56 F8 9A 00 01

		7F D5

[bookmark: _Toc447218097]Software implementation

CRC codes are particularly efficient when it comes to hardware implementation. Software implementation, on the other hand, is very complex. Two CRC calculation examples are implemented in the algorithm below, i.e.:

a non-optimized calculation, the CRC function that calculates the CRC for one byte in serial fashion and returns the value of the calculated CRC checksum.

an optimized function (approximately ten times faster than the non-optimised CRC function), the Crc_opt function that generates the CRC for one byte and returns the value of the new syndrome.

		#include <stdio.h>

#include <stdint.h>

#define ERROR_DETECTED 0

#define NO_ERROR_DETECTED 1

/* Look-up table, only required for optimized CRC version */

uint16_t LTbl[256];

/* Unoptimized CRC version */

/* One step unoptimized CRC */

uint16_t Crc(Data, Syndrome)

 uint8_t Data; /* Byte to be encoded */

 uint16_t Syndrome; /* Original CRC syndrome */

{

 uint8_t icrc; /* Loop index */

 for (icrc = 0; icrc < 8; icrc++) {

 if ((Data & 0x80) ^ ((Syndrome & 0x8000) >> 8)) {

 Syndrome = ((Syndrome << 1) ^ 0x1021) & 0xFFFF;

 } else {

 Syndrome = (Syndrome << 1) & 0xFFFF;

 }

 Data = Data << 1;

 }

 return (Syndrome);

}

/* Encoding procedure */

/* NOTE: Assumption is that enough memory has been allocated for byte */

/* stream B to allow for generation of the checksum value. */

/* The two checksum octets are placed in the destination field */

/* (as Nth and Nth + 1 octet of byte stream B). */

/* The destination field is also known as the packet error */

/* control field. */

void crc_encode(B, octets)

 uint8_t* B; /* Buffer */

 uint32_t octets; /* Size of the buffer */

{

 uint32_t index; /* Loop index */

 uint32_t Chk; /* CRC syndrome */

 Chk = 0xFFFF; /* Reset syndrome to all ones */

 for (index = 0; index < octets; index++)

 Chk = Crc (B[index], Chk); /* Unoptimized CRC */

 B[octets + 1] = Chk & 0xff;

 B[octets] = (Chk >> 8) & 0xff;

}

/* Optimized CRC version */

/* Look-up table initialization */

void InitLtbl(table)

 uint16_t table[]; /* Table to initialise */

{

 uint16_t itable; /* Loop index */

 uint16_t tmp; /* Temporary value */

 for (itable = 0; itable < 256; itable++) {

 tmp = 0;

 if ((itable & 1) != 0) tmp = tmp ^ 0x1021;

 if ((itable & 2) != 0) tmp = tmp ^ 0x2042;

 if ((itable & 4) != 0) tmp = tmp ^ 0x4084;

 if ((itable & 8) != 0) tmp = tmp ^ 0x8108;

 if ((itable & 16) != 0) tmp = tmp ^ 0x1231;

 if ((itable & 32) != 0) tmp = tmp ^ 0x2462;

 if ((itable & 64) != 0) tmp = tmp ^ 0x48C4;

 if ((itable & 128) != 0) tmp = tmp ^ 0x9188;

 table[itable] = tmp;

 }

}

/* One step optimized CRC */

uint16_t Crc_opt(D, Chk, table)

 uint8_t D; /* Byte to be encoded */

 uint16_t Chk; /* Syndrome */

 uint16_t table[]; /* Look-up table */

{

 return (((Chk << 8) & 0xFF00) ^ table[(((Chk >> 8) ^ D) & 0x00FF)]);

}

/* Encoding optimized procedure */

/* NOTE: Assumption is that enough memory has been allocated for byte */

/* stream B to allow for generation of the checksum value. */

/* The two checksum octets are placed in the destination field */

/* (as Nth and Nth + 1 octet of byte stream B). */

/* The destination field is also known as the packet error */

/* control field. */

void crc_encode_opt(B, octets)

 uint8_t* B; /* Buffer */

 uint32_t octets; /* Size of the buffer */

{

 uint32_t index; /* Loop index */

 uint32_t Chk; /* CRC syndrome */

 Chk = 0xFFFF; /* Reset syndrome to all ones */

 for (index = 0; index < octets; index++)

 {

 Chk = Crc_opt (B[index], Chk, LTbl); /* Optimized CRC */

 }

 B[octets + 1] = Chk & 0xff;

 B[octets] = (Chk >> 8) & 0xff;

}

/* Decoding function using unoptimized CRC version */

uint8_t crc_decode(B, octets)

 uint8_t* B; /* Buffer to be checked */

 uint32_t octets; /* Length of the buffer inclduing the crc */

{

 /* Decoding procedure */

 /* The error detection syndrome, S(x) is given by: */

 /* S(x)=(x^16 * C¤(x) + x^n * L(x)) modulo G(x) */

 /* If S(x) = 0 then no error is detected. */

 uint32_t index; /* Loop index */

 uint8_t result; /* Result of the decoding */

 uint16_t Chk; /* CRC syndrome */

 Chk = 0xFFFF; /* Reset syndrome to all ones */

 for (index = 0; index < octets; index++) {

 Chk = Crc (B[index], Chk); /* Unoptimized CRC */

 }

 if (Chk == 0)

 result = NO_ERROR_DETECTED;

 else

 result = ERROR_DETECTED;

 return result;

}

/* Print a buffer in hexadecimal format */

static void print_buffer(B, octets, method)

 uint8_t* B; /* Buffer to display */

 uint32_t octets; /* Length of the buffer in bytes */

 char* method; /* Method's string */

{

 uint32_t index; /* Loop index */

 printf ("%sCRC - Data field with calculated CRC checksum is: ", method);

 for (index = 0; index < octets; index++)

 printf ("%02X ", B[index]);

}

/* Display the message related to the result of a decoding of the buffer */

static void print_status(result)

 uint8_t result; /* Result, should be ERROR_DETECTED or NO_ERROR_DETECTED */

{

 if (result == ERROR_DETECTED)

 printf(" - Error-Detected decoding checksum\n");

 else

 printf(" - No-Error-Detected decoding checksum\n");

}

/* Simple program to test both CRC generating functions */

int main(void)

{

 uint32_t N; /* Size of the buffer - only the data part */

 uint8_t status; /* Status of the decoding */

 /* Declaration of test data (note that two extra octets are declared */

 /* for each data sequence to reserve room for the two checksum octets) */

 uint8_t VData1[] = {0x00, 0x00, 0x00, 0x00};

 uint8_t VData2[] = {0x00, 0x00, 0x00, 0x00, 0x00};

 uint8_t VData3[] = {0xab, 0xcd, 0xef, 0x01, 0x00, 0x00};

 uint8_t VData4[] = {0x14, 0x56, 0xf8, 0x9a, 0x00, 0x01, 0x00, 0x00};

 /* Initiate look-up table */

 InitLtbl (LTbl);

 /* Encode VData1 unoptimized version */

 N = 2;

 crc_encode(VData1, N);

 /* The last 2 octets of VData1 now contain the crc */

 print_buffer(VData1, N + 2, "Unoptimized ");

 /* Decode VData1 */

 status = crc_decode(VData1, N + 2);

 print_status(status);

 /* Encode VData1 optimized version */

 N = 2;

 crc_encode_opt(VData1, N);

 /* The last 2 octets of VData1 now contain the crc */

 print_buffer(VData1, N + 2, " Optimized ");

 /* Decode VData1 */

 status = crc_decode(VData1, N + 2);

 print_status(status);

 /* Encode VData2 unoptimized version */

 N = 3;

 crc_encode(VData2, N);

 /* The last 2 octets of VData2 now contain the crc */

 print_buffer(VData2, N + 2, "Unoptimized ");

 /* Decode VData2 */

 status = crc_decode(VData2, N + 2);

 print_status(status);

 /* Encode VData2 optimized version */

 N = 3;

 crc_encode_opt(VData2, N);

 /* The last 2 octets of VData2 now contain the crc */

 print_buffer(VData2, N + 2, " Optimized ");

 /* Decode VData2 */

 status = crc_decode(VData2, N + 2);

 print_status(status);

 /* Encode VData3 unoptimized version */

 N = 4;

 crc_encode(VData3, N);

 /* The last 2 octets of VData3 now contain the crc */

 print_buffer(VData3, N + 2, "Unoptimized ");

 /* Decode VData3 */

 status = crc_decode(VData3, N + 2);

 print_status(status);

 /* Encode VData3 optimized version */

 N = 4;

 crc_encode_opt(VData3, N);

 /* The last 2 octets of VData3 now contain the crc */

 print_buffer(VData3, N + 2, " Optimized ");

 /* Decode VData3 */

 status = crc_decode(VData3, N + 2);

 print_status(status);

 /* Encode VData4 unoptimized version */

 N = 6;

 crc_encode(VData4, N);

 /* The last 2 octets of VData4 now contain the crc */

 print_buffer(VData4, N + 2, "Unoptimized ");

 /* Decode VData4 */

 status = crc_decode(VData4, N + 2);

 print_status(status);

 /* Encode VData4 optimized version */

 N = 6;

 crc_encode_opt(VData4, N);

 /* The last 2 octets of VData4 now contain the crc */

 print_buffer(VData4, N + 2, " Optimized ");

 /* Decode VData4 */

 status = crc_decode(VData4, N + 2);

 print_status(status);

 return 0;

}

/* This program results in the following output:

Unoptimized CRC - Data field with calculated CRC checksum is: 00 00 1D 0F - No-Error-Detected decoding checksum

 Optimized CRC - Data field with calculated CRC checksum is: 00 00 1D 0F - No-Error-Detected decoding checksum

Unoptimized CRC - Data field with calculated CRC checksum is: 00 00 00 CC 9C - No-Error-Detected decoding checksum

 Optimized CRC - Data field with calculated CRC checksum is: 00 00 00 CC 9C - No-Error-Detected decoding checksum

Unoptimized CRC - Data field with calculated CRC checksum is: AB CD EF 01 04 A2 - No-Error-Detected decoding checksum

 Optimized CRC - Data field with calculated CRC checksum is: AB CD EF 01 04 A2 - No-Error-Detected decoding checksum

Unoptimized CRC - Data field with calculated CRC checksum is: 14 56 F8 9A 00 01 7F D5 - No-Error-Detected decoding checksum

 Optimized CRC - Data field with calculated CRC checksum is: 14 56 F8 9A 00 01 7F D5 - No-Error-Detected decoding checksum

*/

0. [bookmark: _Ref355172292][bookmark: _Toc447218098]The ISO checksum

[bookmark: _Toc447218099]General

The ISO checksum is an error-detecting algorithm that uses integer arithmetic to determine the value of the packet error control field.

The encoding/decoding procedure, which is described in detail in the following clauses, produces a 16-bit packet checksum (2 octets) that is placed in the packet error field. The ISO checksum algorithm (See ISO 8473-1:1998) uses two main computations, one based on the value of the data octets in the data packet and the other is a weighted value of the data octets, whereby the weight is determined by the position of the octet in the data packet proper. The combination of both octets provides the 16-bit packet checksum.

The ISO checksum procedure can be easily implemented in software on processors using a compact and efficient algorithm. In contrast to the CRC algorithm (see clause B.1), it does not require a look-up table and it does not perform bitwise operations on the data to be checked.

This Standard specifies that the ISO checksum procedure can be used to check the contents of an on-board memory area using the services of the memory management service (see clause Error! Reference source not found.). All octets of the on-board memory area are processed in turn and the calculated ISO checksum value is placed in the checksum field of the Memory Check Report.

This Standard also specifies that the ISO checksum procedure can be used to detect errors which have been introduced into a telemetry packet or a telecommand packet) during the transmission, intermediate processing or storage of the packet. All octets of the entire packet including the packet header but excluding the final packet error control field are processed in turn and the calculated ISO checksum value is placed in the packet error control field. The error detection properties of the ISO checksum procedure are almost equal to those of the CRC. The error detection properties can be expressed as follows:

The proportion of all errors in the data that are not detected is approximately , i.e. the checksum detects virtually the same proportion of all errors as does the CRC.

A single bit in error is always detected.

In contrast to the CRC, an error in the data that affects an odd number of bits is not always detected. However, since the checksum has essentially the same overall detection capability as the CRC, this is compensated by more detections of an error in the data that affects an even number of bits.

An error in the data affecting exactly two bits, no more than 2 040 bits apart, is always detected.

The probability that a single error burst spanning 16 bits or less of the data is not detected is approximately . Not all intermediate bits in the error burst span need be affected.

This probability is non-zero because the algorithm does not detect an error burst which causes 8 consecutive bits to change from all zeros to all ones or vice-versa.

This code is intended only for error detection purposes and no attempt should be made to utilize it for correction.

[bookmark: _Toc447218100]Symbols and conventions

The symbols and conventions defined in Table B-3 are used.

[bookmark: _Ref381620380][bookmark: _Toc9958339]ISO symbols and conventions

		symbol

		meaning

		C0, C1

		Variables used in the encoding and decoding procedures. C0 represents the calculation based on the value of the octets, C1 represents the weighted calculations.

		Bi

		The integer value of the ith octet to be checked.

		N

		The number of octets of data to be checked.

		CK1

		The value of the left most octet of the calculated checksum.

		CK2

		The value of the right most octet of the calculated checksum.

[bookmark: _Toc447218101]Encoding procedure

The encoding procedure takes as input N octets of data to be checked and generates a 16-bit checksum value. This checksum value is placed in the packet error control field.

The algorithm used is:

Initialize C0 and C1 to zero.

Process each octet of the data to be checked, sequentially from i = 1 to N as follows:

C0 = (C0 + Bi) modulo 255

C1 = (C1 + C0) modulo 255

Calculate an intermediate checksum value as:

CK1 = ~(C0 + C1) //The bits are flipped.

CK2 = C1

If CK1 = 0, then CK1 = 255.

If CK2 = 0, then CK1 = 255.

Place the resulting values of CK1 and CK2 in their destination fields.

[bookmark: _Toc447218102]Decoding procedure

The decoding procedure takes as input N+ 2 octets of data to be checked and reports whether an error is detected or not. The N+2 octets consist of:

the N octets of data to be checked (the data packet proper), and

the 2 checksum octets that are appended to the N octets of data.

The algorithm used is:

If either, but not both, checksum octets contain the value zero, then report Error-Detected.

Initialize C0 and C1 to zero.

Process each octet of the data to be checked, sequentially from i = 1 to N+2 as follows:

C0 = (C0 + Bi) modulo 255

C1 = (C1 + C0) modulo 255

When all the octets have been processed, if the values of C0 and C1 are both zero, then report No-Error-Detected; otherwise report Error-Detected.

[bookmark: _Toc447218103]Verification of compliance

The binary sequences defined in Table B-4 are provided to the designers as samples for early testing, so that they can verify the correctness of their ISO Checksum errordetection implementation.

All data are given in hexadecimal notation. For a given field (data or ISO Checksum) the leftmost hexadecimal character contains the most significant bit.

[bookmark: _Ref381620563][bookmark: _Toc9958340]Verification of ISO compliance

		data

		CRC

		00 00

		FF FF

		00 00 00

		FF FF

		AB CD EF 01

		9C F8

		14 56 F8 9A 00 01

		24 DC

[bookmark: _Toc447218104]Software implementation

		#include <stdio.h>

#include <stdint.h>

#define ERROR_DETECTED 0

#define NO_ERROR_DETECTED 1

/* Encoding procedure */

/* NOTE: Assumption is that enough memory has been allocated for byte */

/* stream B to allow for generation of the checksum value. */

/* The two checksum octets are placed in the destination field */

/* (as Nth and Nth + 1 octet of byte stream B). */

/* The destination field is also known as the packet error */

/* control field. */

void iso16_encode(B, octets)

 uint8_t* B;		/* Buffer to be checked */

 uint32_t octets;	/* Length of the buffer */

{

 uint8_t C0;

 uint8_t C1;

 uint8_t CK1;

 uint8_t CK2;

 uint32_t index;

 /* Initialize C0 and C1 to zero */

 C0 = 0;

 C1 = 0;

 /* Process each octet of the data to be checked, sequentially from index = 1 to octets as follows: */

 for (index = 0; index < octets; index++) {

 /* C0 = (C0 + Bi) modulo 255 */

 C0 = ((C0 + B[index]) % 255);

 /* C1 = (C1 + C0) modulo 255 */

 C1 = (C1 + C0) % 255;

 }

 /* Calculate an intermediate checksum value as: */

 /* CK1 = ~((C0 + C1) % 255); // flip the bits (~) for negative 1's complement */

 /* CK2 = C1; */

 /* if (0 == CK1) CK1 = 255; */

 /* if (0 == CK2) CK2 = 255; */

 CK1 = ~((C0 + C1) % 255); /* flip the bits (~) for negative 1's complement */

 CK2 = C1;

 if (0 == CK1) CK1 = 255;

 if (0 == CK2) CK2 = 255;

 /* Place the resulting values of CK1 and CK2 in their destination fields. */

 B[octets] = CK1;

 B[octets + 1] = CK2;

}

/* Decoding procedure of the buffer including the calculated ISO checksum in the last two octets */

uint16_t iso16_decode(B, octets)

 uint8_t* B;		/* Buffer to be decoded */

 uint32_t octets;	/* Length of the buffer */

{

 uint8_t C0;

 uint8_t C1;

 uint32_t index;

 /* The last two octets (at position octets-2 and octets-1) contain the calculated checksum. */

 /* If either, but not both, checksum octets contains the value zero, then report Error-Detected. */

 if ((B[octets-2] == 0 && B[octets-1] !=0) || (B[octets-1] == 0 && B[octets-2] != 0))

 return ERROR_DETECTED;

 /* Initialize C0 and C1 to zero */

 C0 = 0;

 C1 = 0;

 /* Process each octet of the data to be checked, sequentially from index = 1 to octets+2 as follows: */

 for (index = 0; index < octets; index++) {

 /* C0 = (C0 + Bi) modulo 255 */

 C0 = (C0 + B[index]) % 255;

 /* C1 = (C1 + C0) modulo 255 */

 C1 = (C1 + C0) % 255;

 }

 /* When all the octets have been processed, if the values of C0 and C1 are both zero, then */

 /* report No-Error-Detected; otherwise report Error-Detected. */

 if (C0 == 0 && C1 == 0)

 return NO_ERROR_DETECTED;

 else

 return ERROR_DETECTED;

}

/* Print a buffer in hexadecimal format */

void print_buffer(B, octets)

 uint8_t* B;		/* Buffer to be displayed */

 uint32_t octets;	/* Length of the buffer */

{

 uint32_t index;

 printf("Data field with calculated ISO Checksum is: ");

 for (index = 0; index < octets; index++)

 printf("%02X ", B[index]);

}

/* Display the message related to the result of a decoding of the buffer */

void print_status(result)

 uint32_t result;		/* Result to be displayed */

{

 if (result == ERROR_DETECTED) {

 printf(" - Error-Detected decoding checksum\n");

 printf(" This can mean that either:\n");

 printf(" 1. One of the two checksum octets initially contains the value 0, or\n");

 printf(" 2. The calculated checksum does not result in two octets with value 0\n");

 } else {

 printf(" - No-Error-Detected decoding checksum\n");

 }

}

/* Verification of compliance */

int main()

{

 uint32_t N;

 uint16_t result;

 /* Declaration of test data (note that two extra octets are declared */

 /* for each data sequence to reserve room for the two checksum octets) */

 uint8_t VData1[] = {0x00, 0x00, 0x00, 0x00};

 uint8_t VData2[] = {0x00, 0x00, 0x00, 0x00, 0x00};

 uint8_t VData3[] = {0xab, 0xcd, 0xef, 0x01, 0x00, 0x00};

 uint8_t VData4[] = {0x14, 0x56, 0xf8, 0x9a, 0x00, 0x01, 0x00, 0x00};

 /* Encode VData1 */

 N = 2;

 iso16_encode(VData1, N);

 /* The last 2 octets of VData1 now contain the checksum */

 print_buffer(VData1, N + 2);

 /* Decode VData1 */

 result = iso16_decode(VData1, N + 2);

 print_status(result);

 /* Encode VData2 */

 N = 3;

 iso16_encode(VData2, N);

 /* The last 2 octets of VData2 now contain the checksum */

 print_buffer(VData2, N + 2);

 /* Decode VData2 */

 result = iso16_decode(VData2, N + 2);

 print_status(result);

 /* Encode VData3 */

 N = 4;

 iso16_encode(VData3, N);

 /* The last 2 octets of VData3 now contain the checksum */

 print_buffer(VData3, N + 2);

 /* Decode VData3 */

 result = iso16_decode(VData3, N + 2);

 print_status(result);

 /* Encode VData4 */

 N = 6;

 iso16_encode(VData4, N);

 /* The last 2 octets of VData4 now contain the checksum */

 print_buffer(VData4, N + 2);

 /* Decode VData4 */

 result = iso16_decode(VData4, N + 2);

 print_status(result);

 return 0;

}

/* This program results in the following output:

Data field with calculated ISO Checksum is: 00 00 FF FF - No-Error-Detected decoding checksum

Data field with calculated ISO Checksum is: 00 00 00 FF FF - No-Error-Detected decoding checksum

Data field with calculated ISO Checksum is: AB CD EF 01 9C F8 - No-Error-Detected decoding checksum

Data field with calculated ISO Checksum is: 14 56 F8 9A 00 01 24 DC - No-Error-Detected decoding checksum

*/

[bookmark: _Ref435698163][bookmark: _Toc447218105](informative)
Summary of requests and reports for PUS standard services

Convention

This annex provides a summary of the message types defined in this Standard.

The summary is organised per service and subservice types.

The tailoring rules used during the deployment of the service type model for a given mission, i.e. to identify what message type applies to what service are also reported in that annex.

Each message type is associated to its applicability constraint (refer to the applicability constraint of the related capability type, requirement 5.3.4b).

Requests and reports

ST[03] housekeeping

Housekeeping reporting

Table C-1 shows the message types of the housekeeping reporting subservice type.

[bookmark: _Toc9958341]Housekeeping reporting message types

		system

		interface

		message type

		6.1.3.9

		8.1.2.13

		TM[3,25]

		housekeeping parameter report

		minimum

		6.1.3.3

		8.1.2.5

		TC[3,5]

		enable the periodic generation of housekeeping parameter reports

		by

declaration

		6.1.3.4

		8.1.2.6

		

		TC[3,6]

		disable the periodic generation of housekeeping parameter reports

		implied by

TC[3,5]

		6.1.3.5

		8.1.2.1

		TC[3,1]

		create a housekeeping parameter report structure

		by

declaration

		6.1.3.6

		8.1.2.3

		

		TC[3,3]

		delete housekeeping parameter report structures

		implied by

TC[3,1]

		6.1.3.7

		8.1.2.9

		

		TC[3,9]

		report housekeeping parameter report structures

		requires

TC[3,1]

		6.1.3.7

		8.1.2.10

		

		

		TM[3,10]

		housekeeping parameter report structure report

		TC[3,9]

response

		6.1.3.8

		8.1.2.17

		

		TC[3,29]

		append parameters to a housekeeping parameter report structure

		requires

TC[3,1]

		6.1.3.9

		8.1.2.15

		TC[3,27]

		generate a one shot report for housekeeping parameter report structures

		by

declaration

		6.1.3.9

		8.1.2.13

		

		TM[3,25]

		housekeeping parameter report

		TC[3,27]

response

		6.1.3.10

		8.1.2.19

		TC[3,31]

		modify the collection interval of housekeeping parameter report structures

		by

declaration

		6.1.3.11

		8.1.2.21

		TC[3,33]

		report the periodic generation properties of housekeeping parameter report structures

		by

declaration

		6.1.3.11

		8.1.2.23

		

		TM[3,35]

		housekeeping parameter report periodic generation properties report

		TC[3,33]

response

Diagnostic reporting

Table C-2 shows the message types of the diagnostic reporting subservice type.

[bookmark: _Toc9958342]Diagnostic reporting message types

		system

		interface

		message type

		6.1.4.9

		8.1.2.14

		TM[3,26]

		diagnostic parameter report

		minimum

		6.1.4.3

		8.1.2.7

		TC[3,7]

		enable the periodic generation of diagnostic parameter reports

		minimum

		6.1.4.4

		8.1.2.8

		TC[3,8]

		disable the periodic generation of diagnostic parameter reports

		minimum

		6.1.4.5

		8.1.2.2

		TC[3,2]

		create a diagnostic parameter report structure

		minimum

		6.1.4.6

		8.1.2.4

		TC[3,4]

		delete diagnostic parameter report structures

		minimum

		6.1.4.7

		8.1.2.11

		

		TC[3,11]

		report diagnostic parameter report structures

		requires

TC[3,2]

		6.1.4.7

		8.1.2.12

		

		

		TM[3,12]

		diagnostic parameter report structure report

		TC[3,11]

response

		6.1.4.8

		8.1.2.18

		

		TC[3,30]

		append parameters to a diagnostic parameter report structure

		requires

TC[3,2]

		6.1.4.9

		8.1.2.16

		TC[3,28]

		generate a one shot report for diagnostic parameter report structures

		by

declaration

		6.1.4.9

		8.1.2.14

		

		TM[3,26]

		diagnostic parameter report

		TC[3,28]

response

		6.1.4.10

		8.1.2.20

		TC[3,32]

		modify the collection interval of diagnostic parameter report structures

		by

declaration

		6.1.4.11

		8.1.2.22

		TC[3,34]

		report the periodic generation properties of diagnostic parameter report structures

		by

declaration

		6.1.4.11

		8.1.2.24

		

		TM[3,36]

		diagnostic parameter report periodic generation properties report

		TC[3,34]

response

Parameter functional reporting configuration

Table C-3 shows the message types of the parameter functional reporting configuration subservice type.

[bookmark: _Toc9958343]Parameter functional reporting configuration message types

		system

		interface

		message type

		6.1.5.2

		8.1.2.25

		TC[3,37]

		apply parameter functional reporting configurations

		minimum

		6.1.5.3

		8.1.2.26

		TC[3,38]

		create a parameter functional reporting definition

		by

declaration

		6.1.5.4

		8.1.2.27

		

		TC[3,39]

		delete parameter functional reporting definitions

		implied by

TC[3,38]

		6.1.5.5

		8.1.2.28

		

		TC[3,40]

		report parameter functional reporting definitions

		requires

TC[3,38]

		6.1.5.5

		8.1.2.29

		

		

		TM[3,41]

		parameter functional reporting definition report

		TC[3,40]

response

		6.1.5.6

		8.1.2.30

		

		TC[3,42]

		add parameter report definitions to a parameter functional reporting definition

		requires

TC[3,38]

		6.1.5.7

		8.1.2.31

		

		

		TC[3,43]

		remove parameter report definitions from a parameter functional reporting definition

		implied by

TC[3,42]

		6.1.5.8

		8.1.2.32

		TC[3,44]

		modify the periodic generation properties of parameter report definitions of a parameter functional reporting definition

		by

declaration

Housekeeping telemetry compression

Table C-4 shows the message types of the Housekeeping telemetry compression subservice type.

[bookmark: _Toc9958344]Housekeeping telemetry compression message types

		system

		interface

		message type

		6.1.6.2

		8.1.2.41

		TM[3,154]

		Send Compressed housekeeping telemetry packet

		minimum

		6.1.6.3

		8.1.2.33

		TC[3,145]

		Define Housekeeping Compression Configuration

		minimum

		6.1.6.4

		8.1.2.34

		TC[3,146]

		Define Housekeeping Compression Reference Packet

		minimum

		6.1.6.5

		8.1.2.35

		TC[3,147]

		Define housekeeping compression packet mask

		minimum

		6.1.6.6

		8.1.2.36

		TC[3,148]

		Delete Housekeeping Compression Configuration

		minimum

		6.1.6.7

		8.1.2.37

		TC[3,149]

		Enable Housekeeping Compression

		minimum

		6.1.6.8

		8.1.2.38

		TC[3,150]

		Disable Housekeeping Compression

		minimum

		6.1.6.9

		8.1.2.39

		TC[3,151]

		Generate new housekeeping compression mask

		by

declaration

		6.1.6.10

		8.1.2.40

		

		TM[3,152]

		Send On-board generated housekeeping compression mask

		TC[3,151]

response

		6.1.6.10

		8.1.2.40

		TM[3,152]

		Send On-board generated housekeeping compression mask

		by

declaration

ST[129] Reaction wheels management

Reaction wheels commanding

Table C-5 shows the message types of the Reaction wheels commanding subservice type.

[bookmark: _Toc9958345]Reaction wheels commanding message types

		system

		interface

		message type

		6.2.3.2

		8.2.2.1

		TC[129,1]

		activate one reaction wheel

		minimum

		6.2.3.3

		8.2.2.4

		TC[129,4]

		deactivate one reaction wheel

		minimum

		6.2.3.4

		8.2.2.2

		TC[129,2]

		activate three reaction wheels

		by

declaration

		6.2.3.5

		8.2.2.3

		TC[129,3]

		activate four reaction wheels

		by

declaration

		6.2.3.6

		8.2.2.5

		TC[129,5]

		deactivate all reaction wheels

		by

declaration

Reaction wheels FDIR

Table C-6 shows the message types of the Reaction wheels FDIR subservice type.

[bookmark: _Toc9958346]Reaction wheels FDIR message types

		system

		interface

		message type

		6.2.4.2

		8.2.2.6

		TC[129,11]

		invalidate reaction wheel

		by

declaration

		6.2.4.3

		8.2.2.7

		TC[129,12]

		power-cycle reaction wheel

		by

declaration

Reaction wheels Rate Sensors management

Table C-7 shows the message types of the Reaction wheels Rate Sensors management subservice type.

[bookmark: _Toc9958347]Reaction wheels Rate Sensors management message types

		system

		interface

		message type

		6.2.5.2

		8.2.2.8

		TC[129,21]

		enable/disable rate sensor

		by

declaration

		6.2.5.3

		8.2.2.9

		TC[129,22]

		invalidate rate sensor

		by

declaration

Reaction Wheels direct commanding

Table C-8 shows the message types of the Reaction Wheels direct commanding subservice type.

[bookmark: _Toc9958348]Reaction Wheels direct commanding message types

		system

		interface

		message type

		6.2.6.2

		8.2.2.10

		TC[129,31]

		Send direct command to reaction wheel

		by

declaration

		6.2.6.3

		8.2.2.11

		TM[129,32]

		generate RWL report

		by

declaration

[bookmark: _Toc447218131] (informative)
System and interface specification index

		service type name

		service type ID

		system

		interface

		

		

		see page

		(reserved)

		1

		

		

		(reserved)

		2

		

		

		Housekeeping

		3

		55

		115

		(reserved)

		4

		

		

		(reserved)

		5

		

		

		(reserved)

		6

		

		

		(reserved)

		7

		

		

		(reserved)

		8

		

		

		(reserved)

		9

		

		

		(reserved)

		10

		

		

		(reserved)

		11

		

		

		(reserved)

		12

		

		

		(reserved)

		13

		

		

		(reserved)

		14

		

		

		(reserved)

		15

		

		

		(reserved)

		16

		

		

		(reserved)

		17

		

		

		(reserved)

		18

		

		

		(reserved)

		19

		

		

		(reserved)

		20

		

		

		(reserved)

		21

		

		

		(reserved)

		22

		

		

		(reserved)

		23

		

		

		(reserved)

		24

		

		

		(reserved)

		25

		

		

		(reserved)

		26

		

		

		(reserved)

		27

		

		

		(reserved)

		28

		

		

		(reserved)

		29

		

		

		(reserved)

		30

		

		

		(reserved)

		31

		

		

		(reserved)

		32

		

		

		(reserved)

		33

		

		

		(reserved)

		34

		

		

		(reserved)

		35

		

		

		(reserved)

		36

		

		

		(reserved)

		37

		

		

		(reserved)

		38

		

		

		(reserved)

		39

		

		

		(reserved)

		40

		

		

		(reserved)

		41

		

		

		(reserved)

		42

		

		

		(reserved)

		43

		

		

		(reserved)

		44

		

		

		(reserved)

		45

		

		

		(reserved)

		46

		

		

		(reserved)

		47

		

		

		(reserved)

		48

		

		

		(reserved)

		49

		

		

		(reserved)

		50

		

		

		(reserved)

		51

		

		

		(reserved)

		52

		

		

		(reserved)

		53

		

		

		(reserved)

		54

		

		

		(reserved)

		55

		

		

		(reserved)

		56

		

		

		(reserved)

		57

		

		

		(reserved)

		58

		

		

		(reserved)

		59

		

		

		(reserved)

		60

		

		

		(reserved)

		61

		

		

		(reserved)

		62

		

		

		(reserved)

		63

		

		

		(reserved)

		64

		

		

		(reserved)

		65

		

		

		(reserved)

		66

		

		

		(reserved)

		67

		

		

		(reserved)

		68

		

		

		(reserved)

		69

		

		

		(reserved)

		70

		

		

		(reserved)

		71

		

		

		(reserved)

		72

		

		

		(reserved)

		73

		

		

		(reserved)

		74

		

		

		(reserved)

		75

		

		

		(reserved)

		76

		

		

		(reserved)

		77

		

		

		(reserved)

		78

		

		

		(reserved)

		79

		

		

		(reserved)

		80

		

		

		(reserved)

		81

		

		

		(reserved)

		82

		

		

		(reserved)

		83

		

		

		(reserved)

		84

		

		

		(reserved)

		85

		

		

		(reserved)

		86

		

		

		(reserved)

		87

		

		

		(reserved)

		88

		

		

		(reserved)

		89

		

		

		(reserved)

		90

		

		

		(reserved)

		91

		

		

		(reserved)

		92

		

		

		(reserved)

		93

		

		

		(reserved)

		94

		

		

		(reserved)

		95

		

		

		(reserved)

		96

		

		

		(reserved)

		97

		

		

		(reserved)

		98

		

		

		(reserved)

		99

		

		

		(reserved)

		100

		

		

		(reserved)

		101

		

		

		(reserved)

		102

		

		

		(reserved)

		103

		

		

		(reserved)

		104

		

		

		(reserved)

		105

		

		

		(reserved)

		106

		

		

		(reserved)

		107

		

		

		(reserved)

		108

		

		

		(reserved)

		109

		

		

		(reserved)

		110

		

		

		(reserved)

		111

		

		

		(reserved)

		112

		

		

		(reserved)

		113

		

		

		(reserved)

		114

		

		

		(reserved)

		115

		

		

		(reserved)

		116

		

		

		(reserved)

		117

		

		

		(reserved)

		118

		

		

		(reserved)

		119

		

		

		(reserved)

		120

		

		

		(reserved)

		121

		

		

		(reserved)

		122

		

		

		(reserved)

		123

		

		

		(reserved)

		124

		

		

		(reserved)

		125

		

		

		(reserved)

		126

		

		

		(reserved)

		127

		

		

		(reserved)

		128

		

		

		Reaction wheels management

		129

		88

		141

[bookmark: _Toc447218132]Bibliography		CCSDS A30.0-G-3

		CCSDS Glossary, July 1997

		CCSDS 102.0B-5

		Packet Telemetry, Issue 5, November 2000

		CCSDS 200.0-G-6

		Telecommand Summary of Concept and Rationale, January 1987

		CCSDS 202.0-B-3

		Telecommand Part 2 – Data Routing Service, Issue 3, June 2001

		CCSDS 727.0-B-4

		CCSDS File Delivery Protocol (CFDP), Issue 4, January 2007

		CCSDS 732.0-B-2

		AOS Space Data Link Protocol, issue 2, 23 May 2007

		CCSDS 910.2-G-1

		Standard Terminology, Conventions and Methodology (TCM) for defining Data Services, November 1994

		ECSS-S-ST-00

		ECSS system – Description, implementation and general requirements

		ECSS-E-ST-50-03

		Space engineering – Space data links – Telemetry transfer frame protocol

		ECSS-E-ST-50-04

		Space engineering – Space data links – Telecommand protocols synchronization and channel coding

		ESA PSS-04-151	

		Telecommand Decoder Specification, Issue 1, September 1993

		ESA PSS-07-101

		Packet utilization standard, Issue 1, May 1994

		ITU-T V.41

		CodeIndependent Error Control System – Data Communication over the Telephone Network, 1989
(before renaming known as Information Technology - CCITT V.41)

		ISO 8473-1:1998

		 Information Technology - Protocol for Providing the ConnectionlessMode Network Service: Protocol specification second edition

		SANA

		Space Assigned Numbers Authority, http://sanaregistry.org

172

image2.png

image3.png

image4.png

image5.jpeg

image1.jpeg

image6.png

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

Toolset deployment - CoreSight

15 May 2020 33PUS C Gen – Final Presentation

• R&D project for ESA (not flight software)
• Goal (summary): assess the use of CoreSight technology

available in ARM SoCs for software execution tracing and
analysis in the context of space applications

• Uses PUS-C for C&C: services 1, 6 and custom 192
• Much of the population was created by 2 engineers with no

previous experience with the toolset, after a 2-hour training
session (iteratively, with reviews)

• ESA's ASN1SCC v4 and DMT was used to create ICD, C
TC/TM transcoders (for use in SW) and Python bindings (for
use in integration tests)

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

Toolset deployment - CoreSight

15 May 2020 34PUS C Gen – Final Presentation

• Some modifications were performed:
• name format change from tcx-y-z to tc-x-y-z
• addition of a CLI interface for PUS-ASN1-GEN
• addition of the ability to generate ASN.1/ACN from

multiple XML-based populations
• The last change is due to a usage optimization:

• one population for each untailored service
• one population containing project specific tailoring

• More manageable solution enabling parallel work and
improving potential reuse

• Project is nearing completion; deployment is a success!

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

Toolset deployment - CoreSight

15 May 2020 35PUS C Gen – Final Presentation

• Telecommands (part of ICD generated from ASN.1/ACN)

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

Toolset deployment - MSP

15 May 2020 36PUS C Gen – Final Presentation

• TASTE enhancement project for ESA
• Goal (summary): implement support for MSP430 16-bit MCU

target in TASTE
• Validation by a demo CubeSat-class software
• Uses PUS-C for C&C: services 1, 2, 3 and custom 222
• Demo SW is developed entirely in TASTE (SDL + C), with

the generated ASN.1/ACN as input
• Runs on a flatsat built around MSP430FR5969 Launchpad

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

Toolset deployment - MSP

15 May 2020 37PUS C Gen – Final Presentation

• Uses the same toolset version as the CoreSight project
• Very simple C&C – a single population
• Small amount of the available memory:

• services are cut down to bare minimum
• bare bone encapsulation instead of CCSDS

• First iteration took ~5h – from concept to ASN.1/ACN
• "DemoSat" is in progress:

• communication has been established
• service 3 works, 1 and 222 is in progress
• MSP430 memory is a challenge

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

Toolset deployment - MSP

15 May 2020 38PUS C Gen – Final Presentation

• Sample from the generated requirements (Pandoc):
6.4.3.2 Switch mode
1. The mode management subservice shall provide the capability to switch mode.

NOTE The corresponding requests are of message type "TC[222,1] switch
mode".

2. Each request to switch mode shall contain exactly one instruction to switch mode.
3. Each instruction to switch mode shall contain:

1. satellite mode to switch to.
4. The mode management subservice shall reject any request to switch mode if any
of the following conditions occurs:

1. the requested transition is invalid;
2. power supply voltage is invalid.

5. For each request to switch mode that is rejected, the mode management
subservice shall generate a failed start of execution notification.
6. For each valid instruction to switch mode, the mode management subservice
shall:

1. switch to the desired mode.

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

Spacebel initiative to bridge the gap between the PUS-C gen
toolset and their SRDB tooling:
● Output of PUS-Cgen: ASN.1 & ACN description of the PUS I/F;
● Output of SPB’s SRDB tooling: SRDB component for on-board

software (for integration in SCOS2000, for example).
Methodology:
● Use the ASN.1 abstract syntax tree as the model for TMTC I/F;
● Replace manual entries for TMTC syntax by references to this

model (imported/referred using the XML AST representation).
Benefits:
● By construction consistency between software & SRDB;
● Methodology also applicable to older PUS versions

Latest activities and way forward

15 May 2020 PUS C Gen - Final Presentation

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

During the course of the PUS-C gen study, we have
successfully:
● Reviewed and enriched an ORM model of the PUS

foundation;
● Identified issues with the PUS-C standard and created

the corresponding change requests;
● Generated a relational database corresponding to the

PUS conceptual model;
● Developed a toolset relying on this relational database.

PUS C Gen - MS-3 Meeting

Conclusions

15 May 2020

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

The developed toolset allows its users to:
● Create new services or subservices that are compliant by

construction to the foundation;
● Create specific, PUS-related artifacts to tailor the PUS-C

to any specific mission;
● Generate the related documentation (functional

specification & ICDs);
● Generate ASN.1 definitions which can then be used to

produce software code to encode & decode TM/TCs.

PUS C Gen - MS-3 Meeting

Conclusions

15 May 2020

C
op

yr
ig

ht
 ©

 2
01

6
by

 S
PA

C
EB

EL
 –

Al
l r

ig
ht

s
re

se
rv

ed

● The tooling developed during the activity proves the
feasability of the automatic generation of such
standards;

● The tools produced by this study have been
successfully applied to a representative use case,
and adopted on several other studies;

● Ongoing and future work may allow closing the gap
with the SRDB representation of the TM/TC
interface data.

PUS C Gen - MS-3 Meeting

Conclusions

15 May 2020

	�Deployment of the PUS-C Standard in Projects supported by an Automatic Generation Toolset 	
	Agenda
	Project Context
	Project Overview
	Project Overview
	PUS foundation model
	PUS foundation model
	PUS foundation model
	PUS foundation model
	PUS foundation model
	Modelling activity outcomes
	PUS-C Toolset
	PUS-C Toolset workflow (part 1)
	PUS-C population
	PUS-C population
	Document generation
	PUS-C standard document
	PUS-C Toolset workflow (part 2)
	ASN.1/ACN generation+
	PUS-C demonstration ICD
	PUS-C demonstration ICD
	SDL modelling
	Parameter monitoring (in PUS 12)
	Parameter monitoring process
	Parameter monitoring definition
	Parameter monitoring definition
	MSC modelling
	SDL and MSC modelling
	Toolset deployment – Proba 3
	Toolset deployment – Proba 3
	Toolset deployment – Proba 3
	Toolset deployment – Proba 3
	Toolset deployment - CoreSight
	Toolset deployment - CoreSight
	Toolset deployment - CoreSight
	Toolset deployment - MSP
	Toolset deployment - MSP
	Toolset deployment - MSP
	Latest activities and way forward
	Conclusions
	Conclusions
	Conclusions

