

How to prevent our
computers from crashing in
outer space?
Redundant Software Technology

Docent: Jeanna de Haan Client: Roland Weigand

Meesterproef Company: European Space Agency

VWO 6, 19/20

Version 15.0
11-3-20

Natanael Djajadi
Kees de Hoogh

Amy van der Meijden

 1

1. INFORMATION PAGE

1.1. DATA

School: Christelijk Lyceum Delft
Location: Molenhuispad 1
Class: V6o&o1
Group: 3
Team name: Bits of Ank
Contractors: Natanael Djajadi, Kees de Hoogh, Amy van der Meijden
Docent: J. De Haan

Client: Roland Weigand
Company: European Space Agency (ESA),
 European Space Research and Technology Centre
Location: Noordwijk, The Netherlands

Date start: 04-09-2019
Date end: 18-03-2020

 2

2. PREFACE

We present to you the final report of our ‘Meesterproef’-project: “Redundant Software
Technology”. This report has been generated as the result of a study to fulfil the
graduation requirements of ‘Technasium’ at Christelijk Lyceum Delft. The project
started on the 4th of September 2019 and the finalisation date is the 18th of March
2020.

This project has been made possible by Roland Weigand, the client who works at
ESA. Together with Mr. Weigand, we formulated the research question of this project.
In each meeting, we received many tips and tricks to fulfil the client's assignment.
The project research was difficult, but the project was successfully finished with the
help of the client, experts, and teachers. They were always available and open to
questions and we are grateful for their support.

We would like to thank the client for giving us this opportunity to do a project for the
ESA. We also would like to thank the experts Eduardo Leegwater Simoes, who works
on blockchain-technology at the company ‘Atos’, and Paul Bokel, who is a Computer
Science-teacher at our school. In addition, we would like to thank our teacher,
Jeanna de Haan, who supported us during the project, and our English teacher,
Anne-Sophie Kooij, who helped us with formulating the sentences in our report in
formal English.

We hope you will enjoy the report.

Natanael Djajadi
Kees de Hoogh
Amy van der Meijden

Delft, 11-03-20

 3

3. RESUME

This project is about software redundancy. So-called ‘bit-flips’ can occur - due to
space radiation - when electronics are in the outer space. This can affect data that is
being sent to earth. The goal of the project was to find and compare different ways to
protect (make redundant) the data against these bit-flips via software. Consequently,
the main question of this project is: “How can software be made more redundant
against bit-flips, induced by space radiation?”

Before dividing this question into multiple sub-questions, literature research was
done. Using the literature research, two ways to protect software were chosen: the
‘Triple Modular Redundancy’ (TMR) and the ‘Hamming code’. Furthermore, multiple
ways to compare these protection-methods were found: the runtime, the used
memory (code size and data size), the ‘Bit-Error-Rate’ (BER) and the ‘Failures-in-
Time’ (FIT). By means of this information, the following sub-questions were defined:

1. “How much does the number of failures per unit of time (‘FIT’) of a protected
program (using the Triple Modular Redundancy or Hamming code) differ from
a non-protected program?”

2. “Which of the means of protection for software, Triple Modular Redundancy or
the Hamming code - measured using the number of injected errors per time
unit (‘BER’), number of failures per time unit (‘FIT’) and runtime - is more
efficient?”

3. “What is the price in runtime and code size by protecting the unprotected
program with Triple Modular Redundancy and Hamming code?”

Subsequently, a program of requirements regarding the research, end result and
programming code was made. Based on this, two different codes were written in C:
software that simulates bit-flips and an application software on which the TMR and
Hamming code can be applied.

At last, the application software, the software with TMR and the software with
Hamming code were tested. After running this software, the software gave the
number of errors, the number of non-errors, and the runtime. With this data, the BER
and the FIT were calculated. The code size and data size were calculated as well.

After doing the measurements, the conclusion can be drawn that there is always a
price to pay for protection. When using the TMR, it will cost more memory than the
Hamming code. On the other hand, when using the Hamming code, it will use more
runtime than the TMR. The client can decide for himself whether he prefers a low
runtime or less used memory.

Figure 1 Our atmosphere

 4

4. INDEX

1. Information page .. 1

1.1. Data ... 1

2. Preface .. 2

3. Resume .. 3

4. Index .. 4

5. Introduction .. 6

5.1. Motivation and relevancy .. 6

5.2. The client ... 7

5.3. Preparations .. 7

5.4. Project steps .. 8

5.5. Content of the report .. 8

6. Research questions ... 9

6.1. Main question .. 9

6.2. Sub-question .. 9

7. Orientation .. 11

7.1. Counting in binary ... 11

7.2. What are the effects of space radiation on software? .. 12

7.3. Programming in C .. 12

7.4. How to protect software against bit-flips .. 13

7.5. Definitions ... 16

8. Program of requirements .. 17

8.1. Research .. 17

8.2. Programming code .. 18

9. Method of working ... 19

9.1. Application software ... 19

9.2. Principle of flipping bits ... 21

9.3. How to inject ... 22

9.4. Protection .. 22

9.5. Measurement methods and implementation ... 23

10. Results .. 24

10.1. Baseline measurement .. 24

10.2. TMR ... 26

10.3. Hamming code ... 28

11. Conclusion .. 28

11.1. Sub-question 1 ... 28

11.2. Sub-question 2 ... 29

 5

11.3. Sub-question 3 ... 29

11.4. Main question .. 29

12. Discussion .. 29

13. Recommendation ... 30

14. Sources ... 31

14.1. Final Report sources .. 31

14.2. Project plan sources .. 32

15. Attachments ... 34

15.1. Attachment 1: Written permission of ESA logo ... 34

15.2. Minutes of meeting ... 34

15.3. Attachment 2: results .. 38

15.4. Attachment 4: Code protections ... 41

15.5. Attachment 5: Projectplan .. 46

 6

5. INTRODUCTION

5.1. MOTIVATION AND RELEVANCY

Radiation can be found everywhere
around us. On earth, people are
protected by the atmosphere and
Earth’s magnetic field. But when
one launches electronics - like
satellites - into space, they are not
protected. Then software can be
affected by space radiation.

Space radiation can cause ‘bit-flips’
(so-called SEU’s = Single Events
Upsets), which are common for
digital electronics, like computer
chips. If data bits are flipped –
which means that the value of a
variable may be changed - the computer may produce wrong results, start executing
incorrect, undesired instructions, or even branch to a wrong address. Most of the
time, the bit-flips are harmless, because a lot of data in computers are stored but
never used. But in some cases, it can lead to crashes or to wrong decisions.

In everyday life, people generally do not think about how disadvantageous these
crashes or wrong decisions could be. Yet, electronics in space are often used in daily
life, for instance for navigation, predicting the weather, the internet, and so on. This is
also why this project belongs to the ‘Bètaworld’ (a category in Technasium) Lifestyle
& Design. More information about this Bètaworld can be found in the attachments >
Projectplan > Bètaworld.

Nowadays, space agencies try to prevent bit-flips by designing chips to be more
tolerant against space radiation. Our client is part of the section at ESA that is
responsible for this. It is relatively difficult to solve this problem via hardware because
manufacturing a chip just for space is very expensive. That is why we make software
tolerant with the use of protection strategies, such that cheaper commercial computer
chips could be used as well. The main question of this project is:

“How can software be made more redundant against bit-flips, induced by space
radiation?”

Figure 1 A computer chip

 7

5.2. THE CLIENT

Our client, Mr. Weigand, is a chip designer, who focuses
on redundancy. He ensures that the chips are robust
against space radiation. He works in the department
“Microelectronics Section” in ESTEC (European Space
Research And Technology Centre), a branch of ESA.

ESA is an international organisation. The mission of ESA
is to shape the development of Europe’s space capability
and to ensure that investment in space will deliver
benefits to Europe and the world. It is ESA’s task to
prepare and implement the European space programme.
Some programmes are designed to find out more about
Earth, our Solar System and Universe, to develop
satellite-based technologies and services and much more. More information about
the client can be found in the attachments > Projectplan > The client.

5.3. PREPARATIONS

Before the programming can be started, an environment had to be found that can
code in C and to make and execute codes at high performance. At first, a website
was used that was able to do these things but it was not able to execute big codes.
Therefore, we chose to use a laptop with Linux ‘Ubuntu’. Installing Linux on a
computer and getting ready to code was quite tricky. A tutorial (Canonical Ltd., n.d.)
was followed to install it properly. Thereafter, a few essential commands were
entered from another tutorial (ProgrammingKnowledge2, 2018) to build and run C
programs. With the use of Visual Studio Code, coding was made easier, because it
recognizes mistakes while working on codes.

Figure 3 The computer with Linux

Figure 2 A redundant chip created by our
client, Mr. Weigand

 8

5.4. PROJECT STEPS

The following steps were taken in the project. A more elaborate version can be found
in the attachments > Projectplan > Project steps.

Step 1: Get familiar with space radiation effects on chips and computers

1. What are the effects of space radiation on the software?
2. How to protect the software against bit-flips?

Step 2: Specification of requirements

Step 3: The research I

1. How to make a program that randomly changes bits?
2. Baseline measurement

Step 4: The interim presentation

Step 5: The research II

1. Add chosen methods to the software
2. Testing the protected programs

Step 6: The second interim presentation

Step 7: End result - the report and presentation

1. Make a report of the research
2. Make a presentation of the research

5.5. CONTENT OF THE REPORT

This report firstly describes the research questions and the literature research
(orientation) of the project. The literature research was done in order to get the
knowledge which is needed to find an answer to the research question. After the
orientation, one can find the program of requirements, the application software and
the software which simulates the bit-flips. Then the results are shown, containing the
baseline measurement and the measurement of two different ways of protection: The
Triple Modular Redundancy and the Hamming code. Using these results, a
conclusion was drawn. The things that could have made the research less reliable
can be found in the discussion. And finally, recommendations for follow-up research
are discussed.

 9

6. RESEARCH QUESTIONS

In the research, the following questions will be answered.

6.1. MAIN QUESTION

As mentioned before, the main question of this research is:

“How can software be made more redundant against bit-flips, induced by space
radiation?”

6.2. SUB-QUESTION

The main question is divided into the following sub-questions. The used terms (like
‘BER’, ‘FIT’, ‘Triple Modular Redundancy’ and ‘Hamming code') will be explained in
the ‘Orientation’.

6.2.1. SUB-QUESTION 1

 “How much does the number of failures per unit of time (‘FIT’) of a protected
program (using the Triple Modular Redundancy or Hamming code) differ from a non-
protected program?”

This sub-question is important to study, because if there is not a big difference with or
without protection, it would be meaningless to implement any protection to the
software. This is because redundancy has impact on runtime and the runtime would
preferably be as low as possible. Most likely, the difference between the Failures-In-
Time (FIT) for the protected and non-protected programs is considerably high. This is
based on the fact that ideally the FIT of the protected program is 0.

6.2.2. SUB-QUESTION 2

“Which of the means of protection for software, Triple Modular Redundancy or the
Hamming code - measured using the number of injected errors per time unit (‘BER’),
number of failures per time unit (‘FIT’) and runtime - is most efficient?”

It would be very useful to answer this question, because in general, we prefer a lower
runtime. If redundancy is implemented in a certain kind of software, the runtime will
increase. By using statistics of the FIT, the Triple Modular Redundancy (TMR) and
the Hamming code can be compared.

In the operation of these two types of protection, the hypothesis is that these two will
be equivalent when it comes to protection, but we expect the runtime of the TMR to
be higher, since the data is tripled.

 10

6.2.3. SUB-QUESTION 3

“What is the consequence for runtime and code size by protecting the unprotected
program with Triple Modular Redundancy and Hamming code?”

Runtime and code size are important metrics in relation to the practical
implementation of the protection measures. Different applications need different kind
of protections. Depending on the application, clients might want a small code size or
a fast runtime.

Because of the protection, the code needs extra logic to correct the bit-flip, and we
expect that this will increase the code size. Also, the runtime will be longer, since the
program should take more time to correct the bit-flip.

 11

7. ORIENTATION

7.1. COUNTING IN BINARY

Before diving into the subject of our project, this section explains how the software
works in the language of a computer. At school, pupils learn that there are ten
different numbers. This is called the decimal system. The decimal system has
historically developed because humans have 10 fingers.

For example, in the decimal system, the number 6359 is the sum of: 6×103 + 3×102 +
5×101 + 9×100

It can also be shown in a table like this:

103 102 101 100

* * * *

6 3 5 9

= = = =

6000 300 50 9

If the numbers in the blue row are placed next to each other, the number 6359 will be
the outcome and if the red row is summed up (6000+300+50+9), the outcome is
6359.

On the contrary, most computers work with the binary system, which means that it
uses only two different numbers, namely 0 and 1. This is because two states can
easily be stored in a (bistable) electronic circuit. If 6359 is written in binary, it is
necessary to split 6359 in powers of two. So 6359 would be: 212 + 211 + 27 + 26 + 24 +
22 + 21 + 20.

212 211 210 29 28 27 26 25 24 23 22 21 20

* * * * * * * * * * * * *

1 1 0 0 0 1 1 0 1 0 1 1 1

= = = = = = = = = = = = =

4096 2048 0 0 0 128 64 0 16 0 4 2 1

 12

If the numbers in the blue row are placed next to each other, 1100011010111 will be
the outcome and if the red row is summed, the outcome is 6359. This means that
1100011010111 in the binary system is the same number as 6359 in the decimal
system.

One 0 or 1 in a computer is called a ‘bit’ (a
binary digit) and 8 bits in a row is called a
‘byte’. This means that a byte can have 28 =
256 different forms. Our computer translates
this binary language to a language that is
understandable for non-experts by processing
one byte at a time.

7.2. WHAT ARE THE EFFECTS OF SPACE RADIATION ON
SOFTWARE?

Everywhere around us are ionizing particles like electrons, neutrons, protons, ions
and, photons (also known as space radiation). When an ionizing particle hits a
sensitive node on a device, this may cause a SEU (a Single Event Upset) meaning
that a 0 can change into a 1 and vice versa. The consequence of this is that the data
has inadvertently been changed. This can lead to crashes and wrong decisions.

7.3. PROGRAMMING IN C

In this project, a software - which is programmed in C - will be tested and improved.
C is a general-purpose programming language that is widely used around the world.
This means it can be used to develop operating systems, embedded systems,
databases and so on. This software is also chosen because it is a procedural
language, which means that the instructions in a C program are executed step by
step. Finally, C programming is faster in executing than most programming
languages like Java, Python, and other languages. In order to understand the
software, it is necessary to understand the basics of C.

7.3.1. BITWISE OPERATORS

When programming in C, operations can be performed by operators on a bit level or
on a byte level. This project concerns bit-flips, so bitwise operators will be used. By
using these operators, the bits will be manipulated. Examples of bitwise operators are
‘NOT’, ‘OR’ and ‘AND’. Bitwise operators are explained below:

For example, the bits p, q, and r can each have two values, namely true (1) and false
(0). Variable r depends on p and q and on which bitwise operator is used. When
using the ‘OR’-operator, you say that r is true when p or q is true. For example, when
p is true and q is false, r is true.

When using the ‘OR’-operator, the table would look like this

Figure 5 The difference between a bit and a byte

 13

p q r
true true true
true false true
false true true
false false false

When using the ‘AND’-operator, one says that r is true when p and q are true. In a
table:

p q r
true true true
true false false
false true false
false false false

In a computer, these operators are often used, but instead of ‘true’ and ‘false’, the
bits take the value 1 (true) or 0 (false).

7.4. HOW TO PROTECT SOFTWARE AGAINST BIT-FLIPS
To protect a software, the software should correct a bit-flip when space radiation is
making a bit flipping. When one wants to protect software against bit-flips it is
important to be able to detect the error in the software, but it is also useful to know
exactly where the error has occurred in order to correct this mistake. There are
various ways - with different degrees of protection - to accomplish this, but all
solutions require additional storage and processing power.
The following methods show different ways to detect and/or correct bit-flips.

7.4.1. TRIPLE MODULAR REDUNDANCY

Triple Modular Redundancy is one of the simplest ways to make software (almost)
redundant. A process is being performed three times and the result will be processed
by a majority-voting to have a single output. For example, if a 1 is sent three times,
the receiver should receive ‘111’ and he can be very sure that the original value is a
1. But if a bit-flip takes place, and the receiver receives ‘110’, he can still be fairly
sure that the original value is a 1 because of the majority-voting.

 14

Figure 6 Triple Modular Redundancy

7.4.2. PARITY BIT

A parity bit - or a check bit - is a bit which is added to control a set of bits, using
parity. In other words, the parity bit makes sure that the set of bits that it controls is in
total an even number. The set of bits ‘0010110’, for example, has three 1s, which is
an odd number. The parity bit will therefore be a 1 to make the sum an even number.
The set of bits including the parity bit will be 00101101. This parity bit is continuously
checking if the sum is an even number. When the sum is not even anymore, an error
will occur and then the user knows that a bit has been flipped in that set of bits. The
cost of this method is low, because only one extra bit is needed to check multiple bits
(for example a byte). A problem of this method is that you don’t know which of the
bits in that set has been flipped, so you can only detect, not correct. In order to
perform ‘Error Detection And Correction’, a more complex scheme is needed, using
more memory.

 15

7.4.3. HAMMING CODE

Using the Hamming code, a fault in the data can be detected as well as corrected,
without doubling the number of bits. This code works by using the following principle,
which is visualized below:

Figure 7 The Hamming code

The set of bits exists of d1, d2, d3, and d4, plus the parity bits p1, p2, and p3. Every
parity bit checks the bits which are in its circle.

• p1 is the parity bit of d1, d4 and d2
• p2 is the parity bit of d1, d4 and d3
• p3 is the parity bit of d3, d4 and d2

When one of the bits is flipped, the parity bits will present an error if the bit-flip has
occurred in its part of the circle. So when the bit d3 flips, the parity bits p2 and p3 will
give an error. With that information, it is clear that the flipped bit is d3 or d4, and
because p1 does not present an error, d1, d4 and d2 are not flipped. Through this, it
is clear that d3 is the flipped bit.

This method is able to detect where the bit has flipped, with a relatively small number
of extra bits. In this method 3 parity bits were used, to control a set of 4 bits.

 16

7.4.4. CHECKSUM

The checksum code is another way to detect an error, which has the following
principle:
Suppose that there is a set of numbers:

25 11 12 7 13 4
The sum of these numbers is 72. Now the remainder of this sum - after dividing with
a randomly chosen number - is taken: 72 modulo* 16 = 8. So 8 is the checksum,
which is added to the set of numbers:
 25 11 12 7 13 4 8

The code continuously checks if the sum of the values including the checksum value
(72+8=80) modulo 16 is 0. If a bit has been flipped, the sum modulo 16 will not be 0
anymore.

* The result of a modulo division is the remainder of an integer division of the given
numbers. For example: 27 / 16 = 1, remainder 11. Consequently, 27 modulo 16 = 11

7.5. DEFINITIONS

In order to test the software on its redundancy, the Bit Error Rate (BER), the Failures
In Time (FIT), the code size, and the data size will be measured.

7.5.1. BER

BER stands for the ‘Bit-Error-Rate’. It is the rate of how many bit-flips occur per unit
of time. It depends on the radiation spectrum present in a satellite orbit and the type
of chip being used.

7.5.2. FIT

FIT stands for the ‘Failures-In-Time’. The FIT is - compared to the BER - a statistical
measure of how many program failures to expect per time unit. The FIT depends on
the BER, but also on how the program is implemented.

7.5.3. CODE SIZE

The code size is the size of the executed code. This is dependent on the length of a
code.

7.5.4. DATA SIZE

The data size is the size of the data in bytes. This depends on the number of
variables in a program. Each variable is 8 bytes on the computer that is used, an Intel
64-bit Linux.

 17

8. PROGRAM OF REQUIREMENTS

Below, the program of requirements of the research, and of the programming code
are shown.

8.1. RESEARCH

Requirements Explanation
The application program should run
easily.

The application program will run quickly,
so no time is lost while waiting for
execution.

The program should be executed from a
command-line.

It will be easier for the researchers to
check if a bit-flip occurs in the program.

The results of bit-flips should be
detected: The program should be self-
checking, returning an error code if there
is a failure.

It will be easier for the researchers to
check if a bit-flip occurs in the program.

It is possible to perform fault injection in
the program.

Otherwise, the bit-flip will not (or rarely)
occur. A bit-flip will occur when a fault
injection is performed.

It should be possible to measure the
execution time of the program with /
without protection scheme, but not
including the fault injection code or any
other debug code such as “printf” and
“scanf”.

The consequences of the protection
scheme (execution time, memory usage)
is an important result for the user /
customer.

The results are processed in results with
statistics.

Where and when the bit-flips occurred
will be clear and well-arranged with the
help of statistics, like graphs.

The program should be redundant
against bit-flips.

The updated program should have
relatively fewer bit-flips than the original
program.

 18

8.2. PROGRAMMING CODE

Requirements Explanation
The application program should be able to
compile with and without debug code.

The program will not use the “printf”
statement when not executed in debug
mode, so runtime is not affected.

The application program should be
executed in a command-line text file.

The program will be made in Visual
Studio Code and the program can be
successfully executed in the terminal.

The effects of bit-flips should be detected. If the result is not as expected, it will
return the program with an error. So the
effects of bit-flips can be detected.

It should be possible to perform fault
injection in the program.

It is possible to perform fault injection
with a code made in a different program.

The effects of bit-flips should be translated
into quantitative metrics BER and FIT.

It is possible to check whether a bit-flip
has occurred. The numbers of errors can
be detected and counted. The runtime
will be measured. By using BER and FIT
the results can be monitored.

 19

9. METHOD OF WORKING

9.1. APPLICATION SOFTWARE

The following program was written to be tested on its redundancy. This software is
chosen, because it is a relatively simple program for adding code. The program will
calculate the sum from zero to 15, which is 120, and will check if this is correct. In
case of a bit-flip, the result could differ from 120. It also measures the runtime. When
debugging, the individual numbers, the sum, and the runtime are provided as output.

The code of the program is shown below, with an explanation per line.

//get a random number for r

#include <stdio.h>
#include <time.h>

clock_t start, end;
double cpu_time_used;

int main()
{

//start the timer
start = clock();

//a for-statement to repeat the program a certain times
for(int j=0; j<10; j++){

int sum = 0;
//a loop that adds 1 to 'i' until 15
for(int i = 0; i < 16; i++)
{

#ifdef DEBUG
printf("%d ", i);
#endif
//add up i to sum
sum += i;

}

//check if the sum is equal to 120
if (sum == 120) {

#ifdef DEBUG
printf("\nSum: %d\n", sum);
#endif

}
else {

printf("error!");

}

}
///stop the timer and print the runtime
end = clock();
cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC;
printf("Runtime:%f \n", cpu_time_used);

return 0;
}

 20

#include <stdio.h> Means that the content of ‘stdio’ is inserted in this place. Stdio.h is
the header file for standard input and output.

int main() {}
Announces that there is a code that finally returns a certain variable number. The
code includes everything between the curly brackets.

int sum = 0;
Creates the variable ‘sum’ and gives this variable a value of 0.

for(int j=0; j<10; j++){}
Consists of three steps:

1. It announces a loop that creates a variable ‘j’ and gives it an initial value of 0.
2. If the value of j is less than 16, the loop part is executed.
3. At the end of the execution, j is incremented, and will repeat again from step 2.

The part between the curly brackets is executed 16 times.

#ifdef DEBUG #endif
This part has two statements. It begins with ‘#ifdef’ and ends with ‘#endif’. The part
between these statements is not included in the compiled program – if “DEBUG” is
not defined - and therefore does not affect runtime.

sum += i;
The value of ‘j’ is added to ‘sum’ in the loop. When the loop is done, the value of
‘sum’ should be 120.

if (sum == 120) {} else {}
This code checks if the ‘sum’ is equal to 120 and executes the part between the first
two brackets. If it is not equal to 120, then the part after ‘else’ between the brackets is
executed.

return 0;
This statement is used to exit the program and to signal that no error occurred.

 21

9.2. PRINCIPLE OF FLIPPING BITS

In order to find the FIT rate, the program and protection scheme have to be tested,
the bits have to be randomly flipped via software, since testing in space or in a
particle accelerator is very expensive. The program injects errors into its variables
using the following code.

int main() {
int a;
//ask for a number for the variable ‘a’
scanf("%d", &a);

//get a random number for r
srand((unsigned)time(NULL));
int r = rand() % 8;

//simulate the bit-flip
a ^= (1 << r);
printf("You entered: %d \n", a);

return 0;

}

int main() {}
Announces that there is a code written, which finally returns a certain variable
number. The code includes everything between the curly brackets;

int a;
Means that there is an integer* called ‘a’;

scanf("%d", &a);
Takes input from the user and stores this in ‘a’. ‘%d’ means that a decimal number is
expected;

srand((unsigned)time(NULL));
Is in order to get a random number, depending on the computer’s internal time clock;

int r = rand() % 8;
Means that integer ‘r’ is a random number between 0 and 7. Consequently, ‘r’ can
assume 8 different numbers;

a ^= (1 << r);
Makes sure that there is a bit flip on integer ‘a’.

* a whole number that can be positive, negative or zero

 22

9.3. HOW TO INJECT
To simulate the effect of space radiation which can arrive any moment during the
execution of the program, a separate program should run fault injections
independently in a multi-tasking environment. Since it is difficult to implement a
program into another program, it was agreed that the application program will have
‘random’ fault injection. So the code of the fault injection is entered within the plain
code to perform a bit-flip. The principle of flipping the bits can be found in section 9.2
Principle of flipping bits.

9.4. PROTECTION
The Triple Modular Redundancy program and the Hamming code program can be
found in the attachments. For the Hamming code, a program (Mishra, 2017) is used.
This code is edited so it functions our ‘counting machine’.

 23

9.5. MEASUREMENT METHODS AND IMPLEMENTATION

9.5.1. CALCULATE FIT AND BER

For space applications, the client should be provided with an expected failure rate.
This can be done with the Failures-In-Time (FIT), a statistical measure of how many
program failures to expect per time unit. Ideally, the FIT should be 0, but with bit-flips,
this is sometimes difficult to achieve. At the same time, the radiation effects are
characterized by the rate of how many bit-flips per time unit occurs, the BER. In this
case, the BER depends on how many errors are injected per run and on the runtime
per run.

This is the procedure to determine the FIT and the BER:

For each test result, the program is run N times. The starting value of N is one million
and after three tests N is increased with one million until ten million is reached. Each
test is carried out three times, because the average of these three values will get
closer to the actual value. The results will contain the following data:

• The number of runs N
• How many errors are injected (Ni) (With one injection per run, Ni = N)
• How many functional failures occur (Nf)
• How many good runs without failures occur (Ng)
• The runtime (T0) for all runs

With this information, the BER can be calculated, using the formula BER = Ni / T0.
This means the BER is the errors that are injected divided by the runtime. The FIT
can be calculated using the formula FIT = Nf / T0, so the functional failures divided by
the runtime. The functional failures are the errors in the execution of the program.
It can also be verified that N = Nf + Ng.

9.5.2. CALCULATE THE DATA SIZE

To calculate the data size, the relevant variables in the program are counted. Every
variable is 8 bytes. So the total amount of bytes is equal to variables × bytes.

9.5.3. CALCULATE THE CODE SIZE

 24

In order to see the size of executed code, the program
needs to be disassembled with the command 'objdump -d
[code]'. This will show many hexadecimal numbers. The
most interesting part of the output is the <main> segment.
To get the code size, one should subtract the first from the
last hexadecimal number. Hexadecimal counting is a
system of numerical notation that has 16 characters in its
base (instead of 10 in the decimal system).

10. RESULTS

The results of the measurements described in section 9.5
will be shown below. The application software (baseline
measurement) and the application software with TMR
protection and Hamming code protection were tested and compared. The test was
performed on the:

- Number of errors
- Number of non-errors
- Runtime

Using the number of errors and runtime, the BER and the FIT were calculated.

The TMR and the Hamming code were also tested on its memory size, so that these
two can be characterized regarding the efficiency of the used memory.

The three variations of the software were tested with a low number of runs (10, 20,
…, 50) as well as a high number of runs (106, 206, 306, …, 107). The low number of
runs is in order to visualize the modification of the BER, because with a high number
of runs the BER is almost constant.

10.1. BASELINE MEASUREMENT

The results of the baseline measurement are shown below.

10.1.1. BER

Figure 8 Executing the command 'objdump
- [code]'

 25

Graph 1

This is the graph of the BER of the baseline measurement, using low numbers. One
can see that the BER increases when the number of runs increases.

With high numbers, the value is approximately 3,7 × 108.

10.1.2. FIT

Graph 2

This is the graph of the FIT of the baseline measurement, using low numbers. As well
as the BER, the FIT increases with the number of runs.

0.00E+00
1.00E+07
2.00E+07
3.00E+07
4.00E+07
5.00E+07
6.00E+07
7.00E+07
8.00E+07
9.00E+07

10 20 30 40 50

BE
R

(N
i/

T0
)

Runs (N)

BER - Baseline Measurement - Low numbers

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

10 20 30 40 50

FI
T

(N
f/

T0
)

Runs (N)

FIT - Baseline Measurement - Low numbers

 26

Graph 3

When looking at the FIT using high numbers, one can see that the increasing trend
does not continue. It looks like the FIT becomes a constant value.

10.1.3. CODE SIZE

The code size is 7fb – 6da = 121. In decimal value is this 289 bytes.

10.2. TMR

The results of the software with the TMR are shown below. Using this protection, the
number of errors is continuously 0, which means that the FIT is also continuously 0
(since FIT = Nf / T0).

10.2.1. BER

1.90E+07

2.00E+07

2.10E+07

2.20E+07

2.30E+07

2.40E+07

2.50E+07

2.60E+07

FI
T

(N
f/

T0
)

Runs (N)

FIT - Baseline Measurement - High numbers

 27

Graph 4

With high numbers, the value is approximately 1,6 × 108.

10.2.2. DATA SIZE

The TMR stores the variables three times to compare them later with each other.
These are stored in data[0], data[1], and data[2]. These should be multiplied by four
to have a better comparison with the Hamming code, as they both should use binary
numbers.

The number of variables in the code should be multiplied by eight. This is because on
a intel 64 bits Linux, every memory word is eight bytes. Therefore, the memory usage
of the TMR is 96 bytes.

10.2.3. CODE SIZE

The hexadecimal code size of TMR is 86d – 6fa = 173. In decimal value is this 371
bytes.

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

10 20 30 40 50

BE
R

(N
i/

T0
)

Runs (N)

BER - TMR - Low numbers

 28

10.3. HAMMING CODE

10.3.1. BER
Graph 5

With high numbers, the value is approximately 3,8 × 107.

10.3.2. DATA SIZE

The Hamming code stores 7 bytes for one number. These variables are data[0] until
data[7]. It stores the variable ‘c’ as well. Therefore, the memory usage of the
Hamming code is 8 variables. This means that the data size is 64 bytes.

10.3.3. CODE SIZE

The code size is 95f – 6fa = 256. In decimal value is this 738 bytes.

11. CONCLUSION

11.1. SUB-QUESTION 1

“How much does the number of failures per unit of time (‘FIT’) of a protected program
(using the Triple Modular Redundancy or Hamming code) differ from a non-protected
program?”

The difference is immense. Because the TMR and the Hamming code do not have
functional failures, the FIT is 0. But the baseline measurement has almost every time
a functional failure, so the FIT average is above the 2,45 × 107 in our research.

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

1.20E+07

1.40E+07

10 20 30 40 50

BE
R

(N
i/

T0
)

Runs (N)

BER - Hamming Code low

 29

11.2. SUB-QUESTION 2

“Which of the means of protection for software, Triple Modular Redundancy or the
Hamming code - measured using the number of injected errors per time unit (‘BER’),
number of failures per time unit (‘FIT’) and runtime - is more efficient?”

By looking at the results, the TMR is more efficient than the Hamming code in
runtime. The FIT is the same for both. TMR costs more storage, so Hamming code is
regarding storage more efficient.

Table 1 The end results

 Runtime BER FIT Code size Data size

Plain code 4,05 × 10-8 3,71 × 108 2,45 × 107 289 bytes NA

TMR 9,19 × 10-8 1,63 × 108 0 371 bytes 88 bytes

Hamming
code

8,09 × 10-7 1,85 × 107 0 738 bytes 64 bytes

11.3. SUB-QUESTION 3

“What is the price in runtime and code size by protecting the unprotected program
with Triple Modular Redundancy and Hamming code?”

By looking at table 1, the runtime of the TMR is 55,93% more slowly than the plain
code and the runtime of the Hamming code is 94,99% more slowly than the plain
code. The code size of the TMR is 22,10% and of the Hamming code 60,84% more
bytes than the plain code. If the client wants a better runtime, TMR is more efficient. If
the client wants a smaller code size, the TMR is also better. For a smaller data size
the Hamming Code is most efficient.

11.4. MAIN QUESTION

“How can software be made more redundant against bit-flips, induced by space
radiation?”

By using different protections like the TMR and Hamming code, the software can be
made more redundant against bit-flips. But there is always a price to pay for
protection. This can influence the runtime, the code size, and data size.

12. DISCUSSION

In line with the hypothesis, the difference between the protected and unprotected
programs FIT is immense. The difference is 2,45 × 107. But - as the results indicate -
there is always a price to pay for protection and this price varies between the different
protections. For example, the TMR’s runtime is faster than the Hamming code, but it

 30

uses more data. By protecting with the Hamming code the bit-flip is checked by
different parity bits, so it takes longer to determine where the bit-flip occurred and to
correct it, explaining the larger runtime and code size. This is not in line with our
hypothesis, since we expected the runtime of TMR to be higher.

The larger data size of the TMR can be explained because in the TMR the data is
tripled, so it cost more storage. This is in line with our hypothesis.

The general application of the results is limited by the design of the protection in this
study. If it happens that two bitflips take place at the same time, the Hamming code
and the TMR are not able to correct the fault. It is beyond the scope of this study to
simulate the effect of space radiation which can arrive at any (random) moment
during the execution of the program, by running run fault injection independently in a
separate program,.

Moreover, the following things could affect the outcome of the research:

- The runtime can be affected by the computer. The computer is a non-realtime
operating system and this will affect the time measured by the laptop.

- A computer is not capable of generating a completely random number, because
there is always an algorithm included when one wants a random number from a
computer. This could have affected the results.

- We are not a professional software engineer, so we cannot guarantee that the
written code is the best one or the most optimal one.

- We do not know if the bit-flip simulator is a good simulation of the bit-flips which
occurs in space.

13. RECOMMENDATION
Further studies should take into account which computer one will use, because there
is a possibility it will impact the results. Also, for a more reliable research, more
protection methods, other than TMR and Hamming code, should be tested to check
whether other redundancy methods can be used, that can handle more bit-flips than
just one in parallel.

 31

14. SOURCES

14.1. FINAL REPORT SOURCES

14.1.1. SITES
Canonical Ltd. (n.d.). Install Ubuntu desktop. Retrieved November 27, 2019,
from https://ubuntu.com/tutorials/tutorial-install-ubuntu-desktop#1-overview

Mishra, N. (2017, March 6). Hamming Code in C and C++. Retrieved January 10,
2020, from https://www.thecrazyprogrammer.com/2017/03/hamming-code-c.html

Parewa Labs Pvt. Ltd. . (n.d.). Learn C Programming | Programiz. Retrieved 8 March
2020, from https://www.programiz.com/c-programming

ProgrammingKnowledge2. (2018, May 22). How to Compile and Run C program
Using GCC on Ubuntu 18.04 LTS (Linux) [Video file]. Retrieved
from https://www.youtube.com/watch?v=oLjN6jAg-sY

Wikipedia. (n.d.). Bitwise operations in C. Retrieved December 11, 2019, from
https://en.wikipedia.org/wiki/Bitwise_operations_in_C

14.1.2. FIGURES

ESA logo:
European Space Agency. (n.d.). ESA Logotype. Retrieved 8 March 2020, from
https://www.esa.int/esalogo/signature.html

Laptop in space:
Quach, K. (2017, August 12). Place your bets: How long will 1TFLOPS HPE box last
in space without proper rad hardening. Retrieved 8 March 2020, from
https://www.theregister.co.uk/2017/08/12/spacex_hpe_iss_launch/

CLD logo:
Christelijk Lyceum Delft. (n.d.). CLD - Home. Retrieved 8 March 2020, from
https://www.chrlyceumdelft.nl/

Technasium logo:
Bouwend Nederland. (2019, October 3). Technasium Innovatieprijs. Retrieved 8
March 2020, from https://jegaathetmaken.nl/technasium-innovatieprijs/

Figure 1: Our atmosphere
Fonds d’écran Belle terre, planète bleue 2560x1440 QHD image. (n.d.). Retrieved 8
March 2020, from https://fr.best-wallpaper.net/Beautiful-Earth-blue-
planet_wallpapers.html

Figure 2: A computer chip
Stuivenberg, J. (2015, May 27). Deze houten computer chip is volledig biologisch
afbreekbaar. Retrieved 8 March 2020, from https://numrush.nl/deze-houten-
computer-chip-is-volledig-biologisch-afbreekbaar/

https://ubuntu.com/tutorials/tutorial-install-ubuntu-desktop#1-overview
https://www.programiz.com/c-programming
https://www.youtube.com/watch?v=oLjN6jAg-sY
https://en.wikipedia.org/wiki/Bitwise_operations_in_C
https://www.esa.int/esalogo/signature.html
https://www.theregister.co.uk/2017/08/12/spacex_hpe_iss_launch/
https://www.chrlyceumdelft.nl/
https://jegaathetmaken.nl/technasium-innovatieprijs/
https://fr.best-wallpaper.net/Beautiful-Earth-blue-planet_wallpapers.html
https://fr.best-wallpaper.net/Beautiful-Earth-blue-planet_wallpapers.html
https://numrush.nl/deze-houten-computer-chip-is-volledig-biologisch-afbreekbaar/
https://numrush.nl/deze-houten-computer-chip-is-volledig-biologisch-afbreekbaar/

 32

Figure 3: A redundant chip created by our client, Mr. Weigand
European Space Agency. (2016, December 8). GR740 next-generation
microprocessor. Retrieved 8 March 2020, from
http://www.esa.int/ESA_Multimedia/Images/2016/12/GR740_next-
generation_microprocessor

Figure 5: The difference between a bit and a byte
Keshav’s Blog: Bit vs Byte. (n.d.). Retrieved 8 March 2020, from
http://keshavsps.blogspot.com/2017/11/bit-vs-byte.html

Figure 6: Triple Modular Redundancy
Wikipedia. (n.d.). Triple Modular Redundancy. Retrieved December 11, 2019, from
https://en.wikipedia.org/wiki/Triple_modular_redundancy#/media/File:Triple_Modular
_Redundancy.JPG

Figure 7: The Hamming code
Wikipedia. (n.d.). Hamming code. Retrieved December 11, 2019, from
https://en.wikipedia.org/wiki/Hamming_code#/media/File:Hamming(7,4).svg

14.2. PROJECT PLAN SOURCES

14.2.1. SITES

Esa. (z.d.-a). ESA Microelectronics Section. Retrieved 28 September 2019, from
https://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/
ESA_Microelectronics_Section

Esa. (z.d.-b). What is ESA? Retrieved 28 September 2019, from
https://www.esa.int/About_Us/Welcome_to_ESA/What_is_ESA

Esa. (z.d.-c). ESTEC: European Space Research and Technology Centre. Retrieved
28 September 2019, from
http://www.esa.int/About_Us/ESTEC/ESTEC_European_Space_Research_and_Tec
hnology_Centre

Esa. (z.d.-d). Systems and software engineering. Retrieved 28 September 2019, from
https://www.esa.int/Our_Activities/Space_Engineering_Technology/Systems_and_sof
tware_engineering

14.2.2. FIGURES

ESA logo: Satellite Telemetry and Command Solutions. (n.d.). Retrieved 28
September 2019, from https://www.renesas.com/kr/en/solutions/key-technology/rad-
hard/satellite-telemetry.html

http://www.esa.int/ESA_Multimedia/Images/2016/12/GR740_next-generation_microprocessor
http://www.esa.int/ESA_Multimedia/Images/2016/12/GR740_next-generation_microprocessor
http://keshavsps.blogspot.com/2017/11/bit-vs-byte.html
https://en.wikipedia.org/wiki/Triple_modular_redundancy#/media/File:Triple_Modular_Redundancy.JPG
https://en.wikipedia.org/wiki/Triple_modular_redundancy#/media/File:Triple_Modular_Redundancy.JPG
https://en.wikipedia.org/wiki/Hamming_code#/media/File:Hamming(7,4).svg
https://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/ESA_Microelectronics_Section
https://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/ESA_Microelectronics_Section
https://www.esa.int/About_Us/Welcome_to_ESA/What_is_ESA
http://www.esa.int/About_Us/ESTEC/ESTEC_European_Space_Research_and_Technology_Centre
http://www.esa.int/About_Us/ESTEC/ESTEC_European_Space_Research_and_Technology_Centre
https://www.esa.int/Our_Activities/Space_Engineering_Technology/Systems_and_software_engineering
https://www.esa.int/Our_Activities/Space_Engineering_Technology/Systems_and_software_engineering
https://www.renesas.com/kr/en/solutions/key-technology/rad-hard/satellite-telemetry.html
https://www.renesas.com/kr/en/solutions/key-technology/rad-hard/satellite-telemetry.html

 33

CLD logo: Christelijk Lyceum Delft, Delft | Technasium.nl. (n.d.). Retrieved 28
September 2019, from https://www.technasium.nl/netwerken/technasium/zuid-
holland/christelijk-lyceum-delft-delft

Figure 1: Satellite Telemetry and Command Solutions. (n.d.). Retrieved 28
September 2019, from https://www.renesas.com/kr/en/solutions/key-technology/rad-
hard/satellite-telemetry.html

Figure 2: De 7 Bèta werelden. (n.d.). Retrieved 28 September 2019, from
https://www.kajmunk.nl/Technasium/De-7-B%C3%A8ta-werelden

https://www.technasium.nl/netwerken/technasium/zuid-holland/christelijk-lyceum-delft-delft
https://www.technasium.nl/netwerken/technasium/zuid-holland/christelijk-lyceum-delft-delft
https://www.renesas.com/kr/en/solutions/key-technology/rad-hard/satellite-telemetry.html
https://www.renesas.com/kr/en/solutions/key-technology/rad-hard/satellite-telemetry.html
https://www.kajmunk.nl/Technasium/De-7-B%C3%A8ta-werelden

 34

15. ATTACHMENTS

15.1. ATTACHMENT 1: WRITTEN PERMISSION OF ESA LOGO

This project has been executed in cooperation with ESA, and the use of the ESA
logo for the report and presentation is permitted.

15.2. MINUTES OF MEETING

15.2.1. MINUTES OF MEETING 1

An interim presentation took place on 20-11-2019. It started with the orientation
about bitwise operators, mathematical models, Hamming code, ecc ram, hash,
checksum, cryptography, peek and poke memory. The specification of requirements
and the chosen software were shown to the client.

It was noted that a presentation should not only show the internal details of the
project to be discussed in a progress meeting. As soon as ‘external audience’ is
present, the presentation should also contain a general introduction about the project
and its goals, for those who are not directly involved in the project.

After the presentation, there was a consultation about how the project should
proceed and what to do about the software.

All codes need different protections. It always need additional storage. The degree of
protection differ. Space radiation does not impact runtime, but redundancy does.
There is always a price to pay for protection.

A suggestion from the client was to test two types of protections (or if there is more
time, more types can be tested). One of the protection was by using triple modular
redundancy (TMR). Every bit is triplicated (= stored three times). After the computer
has read the triple bits from memory, it will compare and check which the good code
was. So when it had sent 111 111 111 and the computer received 111 101 111, it will
know it was 111. It takes more storage and has a longer runtime. The other
protection is by using the Hamming code. Protection is always by adding redundant
data.

Another protection that the researchers do not have to use, but it may be useful, is by
using matrices. It takes all the bits and stores them in a matrix. For example, 16
variables of 32-bit width could be stored in a matrix of 32 columns and 16 rows. You
can add 1 row of for the parity bits over the columns, and one column for the parity
bits over the rows. When you read data, you can check the parity bit of rows and
columns. If a bit is flipped, you know exactly which one.

The program is running, and to simulate the effect of space radiation which can arrive
at any (random) moment during the execution of the program, we should run fault
injection in a separate program, running independently in a multi-tasking
environment. Since this is difficult to implement, it was agreed that the application
program will be “instrumented” with a ‘pseudo-random’ fault injection.

 35

To make the injection, identify all variables, put in an array and start with one variable
(random and take all program and take into a block of memory). In the loop must be
the injection. At first, do one injection into one single bit of only one variable per run.
So in fact, you need three random numbers: time, which variable, which bit inside the
variable.

For many space applications, we need to provide an expected failure rate to the
customer, in other words a statistical measure of how many program failures to
expect per time unit, or Failures-In-Time (FIT). Ideally the FIT should be 0, but this is
sometimes difficult to reach. At the same time, the radiation effects are characterized
by the rate of how many bit-flips per time unit occur, the so-called Bit-Error-Rate
(BER). The procedure to determine the FIT rate as a function of BER is the following:

• a) We measure the run-time T0 of the program without fault injection.
• b) If we inject 1 error per run, the BER = 1/T0, if 2 errors per run, BER = 2/T0

etc.
• c) We perform N runs of random fault injection and count how many runs

experienced an error (Nf). The FIT can then be calculated as FIT = Nf / (N *
T0).

Focus on the data program

The hints the client has given:
- Try and continue coding, but if you’re stuck send it to me and send the code.
- It is important to know what happens in computer and in the data. What is the black
box doing? - It is important to understand each line.

For example, a “for” loop does multiple accesses to the loop variable:
for (i = 0; i < N; i++) {
…..
}
The loop variable I is accessed many times:

• At start of loop, it is initialised (means: write 0)
• At the end of every iteration, it is read, then compared with the end value,

incremented (add +1), and then we write back to memory.

If you want to add data protection to the loop variable, then you have to make sure
that the redundancy (triplication or Hamming code) is generated at every write and
checked at every read.

So most likely you will have to re-write your program, and decompose every complex
statement into individual memory read- and write- operations.

 Besides the failure rate (FIT), your customer also wants to know the price he has to
pay for the protection. The “price” can be expressed in terms of execution speed or
memory usage. Usually, a compromise between protection and cost is necessary.
There is no perfect world, there is no “0 faults at 0 cost”

- Measure the duration of execution of program -> gives matrix and rate of bitflips.

 36

- Which of code is most efficient?
- What is the storage while the program is running and measure the duration
- It is also important to have a virtual box (linux). It is a computer in a computer
- Then you have a command time to measure the duration.
 → get linux control and use time function. Watch out: The time function gives
several output values. We are not interested in the wall-clock time, we are interested
only in the CPU time (user and system), and there are usually different time functions
available on a linux system, read the manual! To get better statistics it is advised to
run the program many times in a loop (for example: run 100 times and divide the
result by 100).
- To measure the run-time, you have to remove the fault injection and other
diagnostic, in particular delete printf, because not necessarily because it has an
impact on the runtime. Try and use conditional codes. All this code (fault injection +
diagnostic) can be made conditional by wrapping it between:
#ifdef <condition>
…..
#endif
Use two condition parameters: INJ for the code doing the injection, and DIAG for any
other diagnostic output.
#ifdef INJ
… code for fault injection …
#endif

#ifdef DIAG
…. printf …
#endif

Note that the #ifdef can be used many times in the program, wherever you have
conditional code.

You can then compile the code with or without the parameter:

gcc -DINJ → to compile with the injection code
gcc -DDIAG → to compile with the diagnostic code
gcc -DINJ -DDIAG → to compile with both

15.2.2. MINUTES OF MEETING 2
A second interim presentation took place on 29-01-2020. We covered the actions we have
done, the added sub-questions, the code, and the results. The presentation ended with what
we have planned to do in the next weeks and the expectations of the client were asked.

Afterward, there was a conversation about how we could make the presentation clear and
understandable, yet in-depth. The first solution is to do the presentation in Dutch, so there
will not be a big language barrier. We should also try to visualize subjects that are hard to
understand, for example with illustrations and animations that explain how bits are
manipulated.

Furthermore, we should be clear why we do this project and why it is so relevant in the end
presentation. Firstly, the introduction: ‘Where did we start? What is the problem? (Radiation,
protons, and ions for example) What if it fails? What can we do to prevent this from
happening?’ We should also explain the principle of the bit flipping.

 37

In the report, we should talk about the needs of a customer. Some customers want a lower
runtime, other customers want a shorter code, and others would prefer less storage
occupation. We could check how many kilobytes are used in a program with a matrix.

What is said too, is that a computer is a non-real time operating system and this will affect
the time measured by the laptop when we do the research. We also should measure the
runtime (T0) with the program that is not affected by the injection. In order to do that, wrap
the injection code by #ifdef INJECTION and re-compile without INJECTION parameter. We
should also do a test, for example, 10 times to be more accurate. Furthermore, the formula of
BER is possibly wrong. it was agreed that the client would look into it (*) and that we would
also search the internet ourselves. At last, we should use comments in the code to make
clear what the code does.

(*) The formula of the BER is not wrong as such, a “rate” is always a number of events
divided by the time during which these events have occurred. However, I think it was wrongly
understood. For the BER, you divided the number of faulty runs by the time. The
misunderstanding is the interpretation of the word “error”. Let’s distinguish two types of error:
 1. The errors you inject (= bit-flips)
 2. The errors in the execution of the program (= functional failures)

The BER, in this case, should be understood as the first type of errors, hence the basic rate
of injection: how many errors do we inject into our design (per time unit)? Consequently, the
BER should be the total number of injections (faulty or not!) divided by the total CPU time.
The BER is a dependent variable, but not a result. It depends on other variables you can
control, namely the execution time and the number of bits you inject per run. If there was
time, the program could be modified for example to inject two or more bits per run, for
example into different variables (not only the loop variable i). The BER would then be higher,
because you are injecting more errors in the same execution time. Note again that the BER
is not a result, it just describes what you have done. It will allow the user to judge if your test
conditions correspond to his real application conditions.

For the FIT rate, I would then take the definition “Failures In Time”, so here you should take
the number of functional failures divided by the execution time. This is actually the RESULT
of your protection: the FIT with protection should be much higher than without protection.

The interesting things for the client are:
1. How far can we go in the limited amount of time?
2. To what extent can we model the injection, so it will simulate the reality?
3. The most important question is: how much can you improve the fault tolerance by your
design? For report and presentation it will be very important to show the following essential
information:

a) How much can we reduce the FIT with our protection methods (TMR, Hamming)
b) What is the price in execution time (protected / unprotected, without printf, without
injection)
c) What is the price in code size. If you compile with gcc, compare the size of the
executable programs (without printf, without injection)

If we have time left, we could try to make more complex programs redundant against bitflips.
First, we want to test the protected programs and finish the end-report and end presentation.

 38

15.3. ATTACHMENT 2: RESULTS

15.3.1. BASELINE MEASUREMENT

Low numbers:

Runs
(N)

ERROR
(Nf)

NO
ERROR

T0 T0 per run BER (Ni/T0) FIT (Nf/T0)

10 10 0 4,00000E-06 4,00000E-07 3,75000E+07 2,50000E+06
10 10 0 6,00000E-06 6,00000E-07 2,50000E+07 1,66667E+06
10 10 0 6,00000E-06 6,00000E-07 2,50000E+07 1,66667E+06
20 20 0 8,00000E-06 4,00000E-07 3,75000E+07 2,50000E+06
20 20 0 6,00000E-06 3,00000E-07 5,00000E+07 3,33333E+06
20 20 0 7,00000E-06 3,50000E-07 4,28571E+07 2,85714E+06
30 30 0 6,00000E-06 2,00000E-07 7,50000E+07 5,00000E+06
30 30 0 8,00000E-06 2,66667E-07 5,62500E+07 3,75000E+06
30 30 0 8,00000E-06 2,66667E-07 5,62500E+07 3,75000E+06
40 40 0 8,00000E-06 2,00000E-07 7,50000E+07 5,00000E+06
40 40 0 8,00000E-06 2,00000E-07 7,50000E+07 5,00000E+06
40 40 0 9,00000E-06 2,25000E-07 6,66667E+07 4,44444E+06
50 50 0 8,00000E-06 1,60000E-07 9,37500E+07 6,25000E+06
50 50 0 8,00000E-06 1,60000E-07 9,37500E+07 6,25000E+06
50 50 0 1,30000E-05 2,60000E-07 5,76923E+07 3,84615E+06

High numbers:

Runs (N) ERROR
(Nf)

NO
ERROR

T0 T0 per run BER (Ni/T0) FIT (Nf/T0)

1000000 994830 5170 0,044193 4,41930E-08 3,39420E+08 2,25110E+07
1000000 994837 5163 0,046678 4,66780E-08 3,21351E+08 2,13128E+07
1000000 994837 5163 0,048653 4,86530E-08 3,08306E+08 2,04476E+07
2000000 1989774 10226 0,083456 4,17280E-08 3,59471E+08 2,38422E+07
2000000 1989661 10339 0,082691 4,13455E-08 3,62796E+08 2,40614E+07
2000000 1989615 10385 0,078022 3,90110E-08 3,84507E+08 2,55007E+07
3000000 2984566 15434 0,121249 4,04163E-08 3,71137E+08 2,46152E+07
3000000 2984621 15379 0,121900 4,06333E-08 3,69155E+08 2,44842E+07
3000000 2984808 15192 0,122281 4,07603E-08 3,68005E+08 2,44094E+07
4000000 3979425 20575 0,160175 4,00438E-08 3,74590E+08 2,48442E+07
4000000 3979326 20674 0,163493 4,08733E-08 3,66988E+08 2,43394E+07
4000000 3979539 20461 0,158301 3,95753E-08 3,79025E+08 2,51391E+07
5000000 4974173 25827 0,203446 4,06892E-08 3,68648E+08 2,44496E+07
5000000 4974310 25690 0,198412 3,96824E-08 3,78001E+08 2,50706E+07
5000000 4974185 25815 0,200268 4,00536E-08 3,74498E+08 2,48376E+07
6000000 5968816 31184 0,235682 3,92803E-08 3,81870E+08 2,53257E+07

 39

6000000 5968904 31096 0,238000 3,96667E-08 3,78151E+08 2,50794E+07
6000000 5968814 31186 0,239565 3,99275E-08 3,75681E+08 2,49152E+07
7000000 6963924 36076 0,277999 3,97141E-08 3,77699E+08 2,50502E+07
7000000 6963946 36054 0,279295 3,98993E-08 3,75947E+08 2,49340E+07
7000000 6963627 36373 0,275919 3,94170E-08 3,80546E+08 2,52379E+07
8000000 7958754 41246 0,315877 3,94846E-08 3,79895E+08 2,51957E+07
8000000 7958657 41343 0,311460 3,89325E-08 3,85282E+08 2,55527E+07
8000000 7958770 41230 0,323244 4,04055E-08 3,71237E+08 2,46216E+07
9000000 8953801 46199 0,355965 3,95517E-08 3,79251E+08 2,51536E+07
9000000 8954033 45967 0,353779 3,93088E-08 3,81594E+08 2,53097E+07
9000000 8953663 46337 0,354534 3,93927E-08 3,80782E+08 2,52547E+07

10000000 9948178 51822 0,392401 3,92401E-08 3,82262E+08 2,53521E+07
10000000 9948656 51344 0,392401 3,92401E-08 3,82262E+08 2,53533E+07
10000000 9948374 51626 0,394226 3,94226E-08 3,80492E+08 2,52352E+07

15.3.2. BASELINE MEASUREMENT TMR

Low number of runs:

Runs
(N)

ERROR
(Nf)

NO
ERROR

T0 T0 per run BER (Ni/T0) FIT
(Nf/T0))

10 0 10 7,00000E-06 7,00000E-07 2,14286E+07 0
10 0 10 8,00000E-06 8,00000E-07 1,87500E+07 0
10 0 10 4,00000E-06 4,00000E-07 3,75000E+07 0
20 0 20 1,00000E-05 5,00000E-07 3,00000E+07 0
20 0 20 1,20000E-05 6,00000E-07 2,50000E+07 0
20 0 20 7,00000E-06 3,50000E-07 4,28571E+07 0
30 0 30 1,00000E-05 3,33333E-07 4,50000E+07 0
30 0 30 1,30000E-05 4,33333E-07 3,46154E+07 0
30 0 30 1,20000E-05 4,00000E-07 3,75000E+07 0
40 0 40 1,60000E-05 4,00000E-07 3,75000E+07 0
40 0 40 1,20000E-05 3,00000E-07 5,00000E+07 0
40 0 40 1,40000E-05 3,50000E-07 4,28571E+07 0
50 0 50 1,30000E-05 2,60000E-07 5,76923E+07 0
50 0 50 1,40000E-05 2,80000E-07 5,35714E+07 0
50 0 50 1,30000E-05 2,60000E-07 5,76923E+07 0

High number of runs:

Runs (N) ERROR
(Nf)

NO
ERROR

T0 T0 per run BER (Ni/T0) FIT (Nf/T0))

1000000 0 1000000 0,096663 9,66630E-08 1,55178E+08 0,00000E+00
1000000 0 1000000 0,096023 9,60230E-08 1,56213E+08 0,00000E+00
1000000 0 1000000 0,097291 9,72910E-08 1,54177E+08 0,00000E+00
2000000 0 2000000 0,187829 9,39145E-08 1,59720E+08 0,00000E+00

 40

2000000 0 2000000 0,186924 9,34620E-08 1,60493E+08 0,00000E+00
2000000 0 2000000 0,187799 9,38995E-08 1,59745E+08 0,00000E+00
3000000 0 3000000 0,275278 9,17593E-08 1,63471E+08 0,00000E+00
3000000 0 3000000 0,276233 9,20777E-08 1,62906E+08 0,00000E+00
3000000 0 3000000 0,278371 9,27903E-08 1,61655E+08 0,00000E+00
4000000 0 4000000 0,361218 9,03045E-08 1,66105E+08 0,00000E+00
4000000 0 4000000 0,367737 9,19343E-08 1,63160E+08 0,00000E+00
4000000 0 4000000 0,368398 9,20995E-08 1,62867E+08 0,00000E+00
5000000 0 5000000 0,453992 9,07984E-08 1,65201E+08 0,00000E+00
5000000 0 5000000 0,456245 9,12490E-08 1,64385E+08 0,00000E+00
5000000 0 5000000 0,454238 9,08476E-08 1,65112E+08 0,00000E+00
6000000 0 6000000 0,545526 9,09210E-08 1,64978E+08 0,00000E+00
6000000 0 6000000 0,547766 9,12943E-08 1,64304E+08 0,00000E+00
6000000 0 6000000 0,545857 9,09762E-08 1,64878E+08 0,00000E+00
7000000 0 7000000 0,632084 9,02977E-08 1,66117E+08 0,00000E+00
7000000 0 7000000 0,637521 9,10744E-08 1,64700E+08 0,00000E+00
7000000 0 7000000 0,635102 9,07289E-08 1,65328E+08 0,00000E+00
8000000 0 8000000 0,731809 9,14761E-08 1,63977E+08 0,00000E+00
8000000 0 8000000 0,726064 9,07580E-08 1,65275E+08 0,00000E+00
8000000 0 8000000 0,725129 9,06411E-08 1,65488E+08 0,00000E+00
9000000 0 9000000 0,813194 9,03549E-08 1,66012E+08 0,00000E+00
9000000 0 9000000 0,818672 9,09636E-08 1,64901E+08 0,00000E+00
9000000 0 9000000 0,815573 9,06192E-08 1,65528E+08 0,00000E+00

10000000 0 10000000 0,905103 9,05103E-08 1,65727E+08 0,00000E+00
10000000 0 10000000 0,904813 9,04813E-08 1,65780E+08 0,00000E+00
10000000 0 10000000 0,909567 9,09567E-08 1,64914E+08 0,00000E+00

15.3.3. BASELINE MEASUREMENT HAMMING CODE

Low number of runs:

Runs (N) ERROR
(Nf)

NO
ERROR

T0 T0 per run BER (Ni/T0) FIT
(Nf/T0))

10 0 10 1,7E-05 1,7E-06 8,8E+06 0
10 0 10 2,0E-05 2,0E-06 7,5E+06 0
10 0 10 1,6E-05 1,6E-06 9,4E+06 0
20 0 20 2,8E-05 1,4E-06 1,1E+07 0
20 0 20 2,9E-05 1,5E-06 1,0E+07 0
20 0 20 2,8E-05 1,4E-06 1,1E+07 0
30 0 30 4,0E-05 1,3E-06 1,1E+07 0
30 0 30 4,0E-05 1,3E-06 1,1E+07 0
30 0 30 4,0E-05 1,3E-06 1,1E+07 0
40 0 40 5,2E-05 1,3E-06 1,2E+07 0
40 0 40 5,2E-05 1,3E-06 1,2E+07 0
40 0 40 5,1E-05 1,3E-06 1,2E+07 0
50 0 50 6,3E-05 1,3E-06 1,2E+07 0

 41

50 0 50 6,4E-05 1,3E-06 1,2E+07 0
50 0 50 6,4E-05 1,3E-06 1,2E+07 0

High number of runs:

Runs (N) ERROR
(Nf)

NO
ERROR

T0 T0 per run BER (N/T0) FIT
(Nf/T0))

1000000 0 1,0E+6 0,422597 4,22597E-07 3,549480E+07 0,00
1000000 0 1,0E+6 0,398128 3,98128E-07 3,767632E+07 0,00
1000000 0 1,0E+6 0,40173 4,01730E-07 3,733851E+07 0,00
2000000 0 2,0E+6 0,790852 3,95426E-07 3,793377E+07 0,00
2000000 0 2,0E+6 0,786612 3,93306E-07 3,813824E+07 0,00
2000000 0 2,0E+6 0,793053 3,96527E-07 3,782849E+07 0,00
3000000 0 3,0E+6 1,172045 3,90682E-07 3,839443E+07 0,00
3000000 0 3,0E+6 1,153052 3,84351E-07 3,902686E+07 0,00
3000000 0 3,0E+6 1,181307 3,93769E-07 3,809339E+07 0,00
4000000 0 4,0E+6 1,572541 3,93135E-07 3,815480E+07 0,00
4000000 0 4,0E+6 1,577375 3,94344E-07 3,803787E+07 0,00
4000000 0 4,0E+6 1,578787 3,94697E-07 3,800385E+07 0,00
5000000 0 5,0E+6 1,974059 3,94812E-07 3,799278E+07 0,00
5000000 0 5,0E+6 1,970278 3,94056E-07 3,806569E+07 0,00
5000000 0 5,0E+6 1,972974 3,94595E-07 3,801367E+07 0,00
6000000 0 6,0E+6 2,370371 3,95062E-07 3,796873E+07 0,00
6000000 0 6,0E+6 2,352587 3,92098E-07 3,825575E+07 0,00
6000000 0 6,0E+6 2,359207 3,93201E-07 3,814841E+07 0,00
7000000 0 7,0E+6 2,771851 3,95979E-07 3,788082E+07 0,00
7000000 0 7,0E+6 2,753554 3,93365E-07 3,813253E+07 0,00
7000000 0 7,0E+6 2,760613 3,94373E-07 3,803503E+07 0,00
8000000 0 8,0E+6 3,142613 3,92827E-07 3,818478E+07 0,00
8000000 0 8,0E+6 3,146563 3,93320E-07 3,813684E+07 0,00
8000000 0 8,0E+6 3,143318 3,92915E-07 3,817622E+07 0,00
9000000 0 9,0E+6 3,532263 3,92474E-07 3,821912E+07 0,00
9000000 0 9,0E+6 3,53961 3,93290E-07 3,813979E+07 0,00
9000000 0 9,0E+6 3,531802 3,92422E-07 3,822411E+07 0,00

10000000 0 1E+07 3,931704 3,93170E-07 3,815139E+07 0,00
10000000 0 1E+07 3,923453 3,92345E-07 3,823162E+07 0,00
10000000 0 1E+07 3,940124 3,94012E-07 3,806986E+07 0,00

15.4. ATTACHMENT 4: CODE PROTECTIONS
The Triple Modular Redundancy program:

///a code that counts from 0 to 15 and adds these up
///simulated bitflips will change these numbers
///the program corrects these bits with the use of triple mdular redundancy
#include <stdio.h>
#include <time.h>

 42

clock_t start, end;
double cpu_time_used;

int main() {

//make variables that count the errors and non-errors
int nonerror = 0, error = 0;

#ifdef BIT
//using the internal time clock for a random number
srand((unsigned)time(NULL));
#endif

//start the timer
start = clock();

//a for-statement to repeat the program a certain amount of times
for(int j=0; j<1000000; j++){

//make variables for counting from 0 to 15, the sum, and the tmr
int n, sum = 0, data[3];

for(n = 0; n < 16; n++) {

//make the three variables from data[] equal to the number
data[0] = n;
data[1] = n;
data[2] = n;

#ifdef BIT

//make variables that will be random numbers to simulate a bit-flip
int r, r2;

//get a random number for 'r' from 0 to 4
r = rand() % 5;

//get a random number for 'r' from 0 to 2
r2 = rand() % 3;

//flip the bit defined by 'r2' in 'data'
data[r2] ^= (1 << r);

#endif

//compare the three vraiables of 'data[]' and make 'n' the correct one
if(data[1] != data[2]) {

if(data[2] == data[0]) {
n = data[0];

}
}
if(data[1] != data[0]) {

if(data[1] == data[2]) {
n = data[2];

}
}
if(data[2] != data[0]) {

if(data[0] == data[1]) {
n = data[1];

}

 43

}

#ifdef NUM

//print the corrected number (0-15)
printf("%d ", n);

#endif

//add up n to sum
sum += n;

}

//check if the sum is equal to 120
if (sum == 120) {

#ifdef SUM
//print the sum
printf("\nSum: %d\n", sum);

#endif

//add 1 to 'nonerror'
nonerror++;

} else {
#ifdef ERROR

//print if a error has happened
printf("error! \n");

#endif

//add 1 to 'error'
error++;

}

}
//stop the timer
end = clock();

//calculate the time used by the timer
cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC;

#ifdef DEBUG

//print the runtime measured by the timer
printf("Runtime:%f \n", cpu_time_used);

//print the amount of errors and non-errors measured by 'count2' and 'count1'
printf("error:%d, no error:%d ", error, nonerror);

#endif

return 0;

}

The Hamming code program:

///a code that counts from 0 to 15 and adds these up
///simulated bitflips will change these numbers
///the program corrects these bits with the use of Hamming code
#include<stdio.h>
#include<time.h>

 44

clock_t start, end;
double cpu_time_used;

int main() {

//make variables that count the errors and non-errors
int nonerror = 0, error = 0;

#ifdef BIT

//using the internal time clock for a random number
srand((unsigned)time(NULL));

#endif

//start the timer
start = clock();

//a for-statement to repeat the program a certain amount of times
for(int j=0; j<1000000; j++){

//make variables for counting from 0 to 15, the sum, the Hamming code, and correction
int n, sum = 0, r, data[7], c;

//a loop that adds 1 to 'i' until 15
for(n = 0; n<16; n++) {

//make a decimal number 'n' (0-15) to a binairy number 'data[]' (0-1)
data[0]=n%2;
n=n/2;

data[1]=n%2;
n=n/2;

data[2]=n%2;
n=n/2;

data[4]=n%2;
n=n/2;

//Calculation of even parity
data[6]=data[0]^data[2]^data[4];
data[5]=data[0]^data[1]^data[4];
data[3]=data[0]^data[1]^data[2];

#ifdef BIT

//make a variable that will be a random number to simulate a bit-flip
int r;

//get a random number for 'r' from 0 to 6
r = rand() % 7;

//flip the bit defined by 'r' in 'data'
data[r] ^= (1 << 0);

#endif

//Calculation of the spot where the bit-flip happened
c=(data[3]^data[2]^data[1]^data[0])*4+

(data[5]^data[4]^data[1]^data[0])*2+

 45

(data[6]^data[4]^data[2]^data[0]);

//Correction of the bit-flip
if(c!=0) {

if(data[7-c]==0) {
data[7-c]=1;

} else {
data[7-c]=0;

}
}

//Converting the binairy numbers 'data[]' to decimal numbers
n = data[0] + data[1]*2 + data[2]*4 + data[4]*8;

#ifdef NUM

//print the corrected number (0-15)
printf("%d ", n);

#endif

//add up n to sum
sum += n;

}
//check if the sum is equal to 120
if (sum == 120) {

#ifdef SUM
//print the sum
printf("\nSum: %d\n", sum);

#endif

//add 1 to 'nonerror'
nonerror++;

} else {
#ifdef ERROR

//print if a error has happened
printf("error! \n");

#endif

//add 1 to 'error'
error++;

}
}
//stop the timer
end = clock();

//calculate the time used by the timer
cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC;

#ifdef DEBUG

//print the runtime measured by the timer
printf("Runtime:%f \n", cpu_time_used);

//print the amount of errors and non-errors measured by 'count2' and 'count1'
printf("error:%d, non-error:%d ", error, nonerror);

#endif

return 0;

 46

}

15.5. ATTACHMENT 5: PROJECTPLAN

 47

Natanael Djajadi
Kees de Hoogh

Amy van der Meijden

Projectplan

Redundant Software Technology

VWO 6, 19/20

Version 1.5.3
11-10-19

Docent: Jeanna de Haan Client: Roland Weigand

Meesterproef Company: European Space Agency

 48

CONTENT

Introduction .. 49

Data ... 49

The students .. 50

Natanael Djajadi .. 50

Kees de Hoogh .. 50

Amy van der Meijden .. 50

The project .. 51

The client ... 51

His job.. 51

The company ... 51

Bètaworld .. 51

Problem definition .. 52

Research/design question ... 52

Project result ... 52

Delimination .. 52

Project steps .. 53

Planning... 54

Sources .. 56

Sites ... 56

Figures ... 56

 49

INTRODUCTION

Everywhere around us is radiation. In space, mostly
space radiation. On earth, people are protected by the
atmosphere. But when one launches electronics - like
satellites - into space, they are not protected. Then
software can be affected by the space radiation. Bit-flips
(so-called SEU = Single Events Upsets) are common
for digital electronics, like computer chips.

If data bits are flipped, the value of a variable may be
changed. If program bits are flipped, the computer may
start executing wrong, undesired instructions, or even branch to a wrong address.
Most of the time, the bit-flips are harmless, because a lot of data in computers are
stored but never used. But in some cases, it can lead to crashes or to wrong
decisions.

To cope with the SEUs, sometimes special computer chips are developed, but these
are very expensive.

The project is focused on the protection of the data used in a program.

DATA

School: Christelijk Lyceum Delft
Location: Molenhuispad 1
Class: V6o&o1
Group: 3
Team name: Bits of Ank
Contractors: Natanael Djajadi, Kees de Hoogh, Amy van der Meijden
Docent: J. De Haan

Client: Roland Weigand
Company: European Space Agency,
 European Space Research and Technology Centre
Location: Noordwijk

Date start: 04-09-2019
Date end: 18-03-2020

Figure 4 Satellite

 50

THE STUDENTS

NATANAEL DJAJADI

My name is Natanael Djajadi and I am 17 years old. I chose this project because I
like projects related to software and computers. I really want to study Computer
Science and Engineering (TU Delft) which is the reason I chose a project in this area.
I am also interested in electronics related to space, like rocket ships or satellites. So I
am very pleased with this assignment and I am really excited.

This project will be really beneficial to my English and I can learn a lot about
programming from this project, which both can be very useful for my next study,
Computer Science and Engineering.

Portfolio: https://natanaeldj.jimdo.com/

KEES DE HOOGH

My name is Kees de Hoogh, I am sixteen years old and I am interested in
architecture, informatics and sport. I am planning to start a study in civil engineering
or architecture. Although these studies have little in common with this current project,
I am very excited about what we will to achieve in the upcoming months. Particularly,
the programming to simulate disturbances in space and see whether we can find a
solution for this problem. The conceptual thinking and translation into a practical
result forms a good basis for an academic study.

Portfolio: https://keesdh.wixsite.com/kees

AMY VAN DER MEIJDEN

My name is Amy van der Meijden and I am sixteen years old. I am mainly interested
in the mathematical subjects and especially Math and Computer Science, which I
also want to study. I am very excited about this project because I think this project
relates to the next study I will follow. Computer Science and Engineering is
completely in English so I think this project will be a good exercise to improve my
English as well.

Portfolio: https://amy.vandermeijden.net

https://natanaeldj.jimdo.com/
https://keesdh.wixsite.com/kees
https://amy.vandermeijden.net/

 51

THE PROJECT

THE CLIENT

HIS JOB

Our client, Mr. Weigand, is a chip designer, who focusses on redundancy. He
ensures that the chips are robust against space radiation. He works in the
department “Microelectronics Section” in ESTEC (European Space Research And
Technology Centre), a branch of ESA.

THE COMPANY

Our project is for the ESA (European Space Agency), which is an international
organisation. The mission of ESA is to shape the development of Europe’s space
capability and to ensure that investment in space will deliver benefits to Europe and
the world. It is ESA’s task to prepare and implement the European space
programme. Some programmes are designed to find out more about Earth, our Solar
System and Universe, to develop satellite-based technologies and services and
much more.

ESA also has branches in some European countries, each with different
responsibilities. The ESTEC, the European Space Research and Technology Centre,
is located in Noordwijk, the Netherlands. The ESTEC is ESA’s technical heart, where
most of ESA’s projects are born and where they are led through the different
development phases. Mr. Weigand works here, in the section ‘Microelectronics’.

THE JOB

There are several separate elements which are needed to complete a space mission.
A spacecraft itself consists of many elements with different individual subsystems
developed by specialized teams. The client is a chip designer, but we will work in a
different section, namely the Systems and Software Technology Section.

BÈTAWORLD

This project belongs to the Bètaworld Lifestyle & Design.

Today, all sorts of things from space, like GPS or weather
prediction, are widely used by people and are involved in our
lifestyle. In this project we will use these techniques and that
is why this project belongs to Lifestyle & Design.

This project is about making the software redundant against
space radiation. This can be beneficial for the future.

Figure 5 Lifestyle and Design

 52

PROBLEM DEFINITION

As mentioned before in the introduction, systems on earth are protected from space
radiation by the atmosphere. Satellites, and specifically chips in space are not
protected and they have a chance of being affected by space radiation. This can
cause bit-flips in chips, which will for instance lead to faults in the data or even a
computer crash.

Imagine this happening in a rocket ship. Bit-flips could cause problems, like engine or
steering failures. Such failures could be catastrophic and lead to a loss of the rocket
or satellite, so the risk of the occurrence of bit-flips should be as small as possible.

Space agencies try to prevent this by designing chips to be more tolerant against
space radiation. Our client is part of the section that is responsible for this. But it is
difficult to solve this problem via hardware because manufacturing a chip just for
space is very expensive. That is why we test tolerance by software backups, such
that cheap commercial computer chips could be used as well.

RESEARCH QUESTION

Our research/design question is: ‘How to make a chosen software running on a
commercial computer tolerant against faults induced by space radiation?’

PROJECT RESULT

The client expects, as a project result, to see statistics of the research that we have
done. We will compare the results of the old and the new software (size and
performance) and a demonstration of the new software that we developed.

DELIMINATION

We will focus on the principles how to make software tolerant against bit-flips.
However, we will not use complex programs to develop our software. Hardware, such
as chips, will not be discussed.

 53

PROJECT STEPS

Step 1: Orientate in familiarisation with space radiation effects on chips and
computers

3. What are the effects of space radiation on the software?

We will analyse literature and process the information. Here we filter out the most
important pieces. We will search for additional information on the internet as well. By
answering this question, we will understand how bit-flips originate.

4. How to protect the software against bit-flips?

First we will search for a software, which is easily compiled and executed in (non-
graphic) command-line mode. Therefore, we will ask an expert or search for software
and filter the software to use in our project. Then we become familiar with the
software and test how it works. Finally, we find and analyse methods to protect
software from bit-flips by literature and internet.

Step 2: Specification of requirements

We will make a specification of requirements, to get more clarity about the criteria of
the research and end result.

Step 3: The research (I)

3. How to make a program that randomly changes bits?

We try to find an expert who has knowledge about bit-flips, informatics etc. With the
help from the expert, we will make a program that randomly changes bits, to ensure
the research will be reliable. By doing so, the program makes the changes stable and
equivalent.

4. Baseline measurement

We use the program to change bits in the original, unprotected software. Then we will
adjust the bits of the chosen software, so we perform fault injection. Then we look
into and processing the results with statistics.

Step 4: The interim presentation

We will make an appointment with the client, so we can check together if we are on
the right path. We also use this time to discuss how we can tackle present problems.

Step 5: The research (II)

3. Add chosen method(s) to the software

We will choose methods of our orientation to add to our software, so our software will
be protected against bit-flips.

4. Testing the protected program

We use the program to adjusted, protected change bits in the software. We will then
perform fault injection. Then we look into and processing the results with statistics.

 54

Step 6: The second interim presentation

We will make an second appointment with the client, so we can check if we still are
on the right path. We also use this time to discuss if our research is what he had in
mind.

Step 7: End result - the report and presentation

3. Make a report of our research

We will make a report of our research. It includes orientation, program of
requirements, the research and the results of our research. At last, we make a
conclusion and a discussion.

4. Make a presentation of our research

We will make a presentation with a demonstration and graphics. In this presentation
we will show our research process and the outcome of it (supported by statistics).

PLANNING

On the next page

 55

 56

SOURCES

SITES

Esa. (z.d.-a). ESA Microelectronics Section. Geraadpleegd op 28 september 2019, van
https://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/ESA_Microelectronics_S
ection

Esa. (z.d.-b). What is ESA? Geraadpleegd op 28 september 2019, van
https://www.esa.int/About_Us/Welcome_to_ESA/What_is_ESA

Esa. (z.d.-c). ESTEC: European Space Research and Technology Centre. Geraadpleegd op 28 september 2019,
van http://www.esa.int/About_Us/ESTEC/ESTEC_European_Space_Research_and_Technology_Centre

Esa. (z.d.-d). Systems and software engineering. Geraadpleegd op 28 september 2019, van
https://www.esa.int/Our_Activities/Space_Engineering_Technology/Systems_and_software_engineering

FIGURES

ESA logo: Satellite Telemetry and Command Solutions. (z.d.). Geraadpleegd op 28 september 2019, van
https://www.renesas.com/kr/en/solutions/key-technology/rad-hard/satellite-telemetry.html

CLD logo: Christelijk Lyceum Delft, Delft | Technasium.nl. (z.d.). Geraadpleegd op 28 september 2019, van
https://www.technasium.nl/netwerken/technasium/zuid-holland/christelijk-lyceum-delft-delft

Figure 1: Satellite Telemetry and Command Solutions. (z.d.). Geraadpleegd op 28 september 2019, van
https://www.renesas.com/kr/en/solutions/key-technology/rad-hard/satellite-telemetry.html

Figure 2: De 7 Bèta werelden. (z.d.). Geraadpleegd op 28 september 2019, van
https://www.kajmunk.nl/Technasium/De-7-B%C3%A8ta-werelden

https://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/ESA_Microelectronics_Section
https://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/ESA_Microelectronics_Section
https://www.esa.int/About_Us/Welcome_to_ESA/What_is_ESA
http://www.esa.int/About_Us/ESTEC/ESTEC_European_Space_Research_and_Technology_Centre
https://www.esa.int/Our_Activities/Space_Engineering_Technology/Systems_and_software_engineering
https://www.renesas.com/kr/en/solutions/key-technology/rad-hard/satellite-telemetry.html
https://www.technasium.nl/netwerken/technasium/zuid-holland/christelijk-lyceum-delft-delft
https://www.renesas.com/kr/en/solutions/key-technology/rad-hard/satellite-telemetry.html
https://www.kajmunk.nl/Technasium/De-7-B%C3%A8ta-werelden

	1. Information page
	1.1. Data

	2. Preface
	3. Resume
	4. Index
	5. Introduction
	5.1. Motivation and relevancy
	5.2. The client
	5.3. Preparations
	5.4. Project steps
	5.5. Content of the report

	6. Research questions
	6.1. Main question
	6.2. Sub-question
	6.2.1. Sub-question 1
	6.2.2. Sub-question 2
	6.2.3. Sub-question 3

	7. Orientation
	7.1. Counting in binary
	7.2. What are the effects of space radiation on software?
	7.3. Programming in C
	7.3.1. Bitwise operators

	7.4. How to protect software against bit-flips
	7.4.1. Triple Modular Redundancy
	7.4.2. Parity bit
	7.4.3. Hamming code
	7.4.4. Checksum

	7.5. Definitions
	7.5.1. BER
	7.5.2. FIT
	7.5.3. Code size
	7.5.4. Data size

	8. Program of requirements
	8.1. Research
	8.2. Programming code

	9. Method of working
	9.1. Application software
	9.2. Principle of flipping bits
	9.3. How to inject
	9.4. Protection
	9.5. Measurement methods and implementation
	9.5.1. Calculate FIT and BER
	9.5.2. Calculate the data size
	9.5.3. Calculate the code size

	10. Results
	10.1. Baseline measurement
	10.1.1. BER
	10.1.2. FIT
	10.1.3. Code size

	10.2. TMR
	10.2.1. BER
	10.2.2. Data size
	10.2.3. Code size

	10.3. Hamming code
	10.3.1. BER
	10.3.2. Data size
	10.3.3. Code size

	11. Conclusion
	11.1. Sub-question 1
	11.2. Sub-question 2
	11.3. Sub-question 3
	11.4. Main question

	12. Discussion
	13. Recommendation
	14. Sources
	14.1. Final Report sources
	14.1.1. Sites
	14.1.2. Figures

	14.2. Project plan sources
	14.2.1. Sites
	14.2.2. Figures

	15. Attachments
	15.1. Attachment 1: Written permission of ESA logo
	15.2. Minutes of meeting
	15.2.1. Minutes of meeting 1
	15.2.2. Minutes of meeting 2

	15.3. Attachment 2: results
	15.3.1. Baseline measurement
	15.3.2. Baseline measurement TMR
	15.3.3. Baseline measurement Hamming code

	15.4. Attachment 4: Code protections
	15.5. Attachment 5: Projectplan

	Content
	Introduction
	Data
	The students
	Natanael Djajadi
	Kees de Hoogh
	Amy van der Meijden

	The project
	The client
	His job
	The company
	The job

	Bètaworld
	Problem definition
	Research question
	Project result
	Delimination
	Project steps
	Planning
	Sources
	Sites
	Figures

