SpaceFibre Interface Chip Final Presentation

1st June 2021

Together ahead. RUAG

TSTAR-Dundee Final Presentation Agenda

- Introduction
- SpaceFibre Interface Chip Architecture
- SpaceFibre Interface Chip Verification and Validation
- ASIC Feasibility
- Conclusions

×к

SpaceFibre Interface Chip Introduction

Steve Parkes, CTO STAR-Dundee Ltd. Felix Siegle, ESA Technical Officer

Together ahead. RUAG

SpaceFibre

Next generation of SpaceWire technology

- Very high performance
 - 6.25 Gbit/s per lane
- Runs over electrical or optical cables
 - Few m electrical
 - 100 m fibre optic
- Multi-lane capability
 - Bandwidth aggregation
 - Quad lane link at 6.25Gbit/s per lane giving 25Gbit/s
 - Maximum of 16 lanes
 - Rapid graceful degradation on lane failure
 - Asymmetric traffic supported with unidirectional lanes
- Low-latency broadcast messages
 - For time-distribution, synchronisation, event signalling, error notification, etc.

SpaceFibre

Next generation of SpaceWire technology

- Novel quality of service
 - Up to 32 virtual channels
 - Priority, bandwidth reservation and scheduling
- Virtual networks
 - Constructed with virtual channels
 - Acting as independent networks over a single physical network
- Innovative fault detection, isolation and recovery
 - At the link level enabling rapid error recovery (few microseconds)
 - Babbling node/virtual channel protection
 - Graceful degradation of multi-lane link
 - Multi-lane link technology patented free of charge licence for space applications
- Small footprint

5

- Taking a few percent of a recent radiation tolerant FPGA
- Straightforward to integrate with existing SpaceWire equipment

STAR-Dundee SpaceFibre ECSS Standard

Space engineering

SpaceFibre - Very high-speed serial link

ECSS Secretariat ESA-ESTEC Requirements & Standards Division Noordwijk, The Netherlands

- Published in May 2019
- After 12 years R&D
 - by STAR-Dundee and University of Dundee
 - Funded by
 - STAR-Dundee
 - European Commission
 - ESA
 - UKSA
- ECSS standardisation started in 2015
 - Took 4 years
 - Inputs from international spacecraft engineers

SpaceFibre Routing Switch - First Light 2017

7

STAR-Dundee Study Aims

- Design a high-performance, versatile SpaceFibre interface chip to:
 - Bridge between existing SpaceWire devices and a SpaceFibre network
 - Provide the QoS and FDIR capabilities of SpaceFibre to the SpaceWire traffic
 - Reduce cable mass and simplifying redundancy schemes
 - Collect data from high data-rate instruments and send it to a mass-memory unit
 - Interface to an FPGA or ASIC inside the instrument (or other equipment)
 - To collect the high data-rate data
 - Support data rates in the range of 1 to 5 Gbit/s
 - Support configuration, control and monitoring of the instrument
 - Using the same network connection as is used for transferring data
 - Provide an easy migration path for existing equipment
 - That uses Wizard Link or Channel Link technology
 - Provide the full capabilities of SpaceFibre in the chip

STAR-Dundee Study Aims

- Provide existing processing devices with a SpaceFibre interface so that they can:
 - Process data provided over SpaceFibre
 - Control equipment over a SpaceFibre network
- Connect to COTS processors
 - Using an Gigabit Ethernet interface
- Program reprogrammable FPGAs over a network
 - In support of reconfigurable processing systems
- Provide time-distribution, event synchronisation and error reporting services
 - Using the SpaceFibre broadcast mechanism

STAR-Dundee Study Activities

XX

SpaceFibre Interface Chip Architecture

Together ahead. RUAG

STAR-Dundee Parallel IO Modes of Operation

Parallel IO Mode	SpW Interfaces	Parallel Inputs	Parallel Outputs	GMII Interfaces
SpW Bridge	12	0	0	0
Parallel TX	2	2	0	0
Parallel RX	2	0	2	0
Parallel TX/RX	2	1	1	0
Parallel TX/GMII	2	1	0	1
Parallel RX/GMII	2	0	1	1
Parallel TX/SpW Bridge	7	1	0	0
Parallel RX/SpW Bridge	7	0	1	0
GMII/SpW Bridge	7	0	0	1

STAR-Dundee

GPIO Functions

Table 5-7 GPIO Functions and IO Pin Sharing

S3	S2	S1	SO	Mode	GPIO[31:24]	GPIO[23:16]	GPIO[15:8]	GPIO[7:0]
0	0	0	0	Status0	Status[31:24]	Status[23:16]	Status[15:8]	Status[7:0]
0	0	0	1	Status1	Status[63:56]	Status[55:48]	Status[47:40]	Status[39:32]
0	0	1	0	BM RX	BC[7:0]	BType[7:0]	BData[15:8]	BData[7:0]
0	0	1	1	BM TS	BData[31:24]	BData[23:16]	BData[15:8]	Time-Slot[7:0]
0	1	0	0	Time0	Seconds[15:8]	Seconds[7:0]	FracSecs[1:8]	FracSecs[9:16]
0	1	0	1	Time1	Seconds[23:16]	Seconds[15:8]	Seconds[7:0]	FracSecs[1:8]
0	1	1	0	DataOut	DOut[31:24]	DOut[23:16]	DOut[15:8]	DOut[7:0]
0	1	1	1	Config				
1	0	0	0	DataIn	DIn[31:24]	DIn[23:16]	DIn[15:8]	DIn[7:0]
1	0	0	1	DatalO	Dln[15:8]	DIn[7:0]	DOut[15:8]	DOut[7:0]
1	0	1	0	BM TX	BC[7:0]	BType[7:0]	BData[15:8]	BData[7:0]
1	0	1	1	SPI/I2C	SPI/I2C7,6	SPI/I2C5,4	SPI/I2C3,2	SPI/I2C1,0
1	1	0	0	FPGA0	SlctMAP D[7:0]	SlctMAP Cntrl	DIn[7:0]	DOut[7:0]
1	1	0	1	FPGA1	JTAG	SPI/I2C5,4	DIn[7:0]	DOut[7:0]
1	1	1	0	FPGA2	SlctMAP D[7:0]	SlctMAP Cntrl	SPI/I2C3,2	Time-Slot[7:0]
1	1	1	1	EPGA3	JTAG	SPI/I2C5,4	SPI/I2C3,2	Time-Slot[7:0]

SpaceFibre Interface Chip FPGA and FMC Board

Together ahead. RUAG

STAR-Dundee SpaceFibre Interface Chip Development

- Designed in VHDL
- Extensively simulated and tested
- Implemented in FPGA hardware
 - On a specially designed FMC board
- Tested by STAR-Dundee
 - SpaceWire Bridge and GPIO testing
 - Using SpaceWire Bridge and GPIO Test board
 - Parallel and Ethernet interface testing
 - Using Parallel/GMII Test board
- Tested by Airbus
 - Remote FPGA programming over SpaceFibre

STAR-Dundee SpFi Interface Chip FMC Module Architecture

STAR-Dundee SpFi Interface Chip FMC Module

VITA 57 FMC board Kintex 7 FPGA Compatible with Xilinx and other FPGA development boards Available for purchase from STAR-Dundee

SpaceFibre Interface Chip SpaceWire Bridge and GPIO Test Board

Together ahead. RUAG

STAR-Dundee SpaceWire Bridge Test Board

STAR-Dundee SpaceWire Bridge Test Board

SpaceWire Bridge Test Board

STAR-Dundee

STAR-Dundee STAR Fire Mk3

STAR-Dundee Tests with SpaceWire Bridge Set-Up

- SpaceWire Bridge Tests
 - Sending and Receiving SpaceWire Data over SpaceFibre
 - GPIO tests
 - Remote FPGA programming over SpaceFibre using JTAG

SpaceWire Bridge Test Architecture

STAR-Dundee SpaceWire Bridge Test Hardware Setup

SpaceWire Bridge Testing Results

STAR-System Transmit/Receive

STAR-Dundee

STAR-System Source/Sink

FPGA Configuration Tests

- Uses the Parallel Test Set-Up
- FPGA Configuration Tests:
 - Configuring the Test FPGA over SpaceFibre using SelectMAP
 - Using the Parallel/GMII Test Board
 - Configuring the Test FPGA over SpaceFibre using JTAG
 - Using the SpaceWire Bridge test Board
- Final testing carried out by Airbus GmbH

STAR-Dundee Remote FPGA Programming

Comments:

- 1. JTAG interface is via a PMOD connector on the GMII/Parallel Test Board
- 2. STAR-Dundee provided GMII/Parallel Test Board, STAR Fire, SpW/SpFi FMC board, FPGA configuration bit stream encoding/download software.

Scrub

Data

STAR-Dundee

SpaceWire Bridge Test Board Configuration

Test carried out by Airbus GmbH

Remote FPGA Programming Over SpaceFibre

Test carried out by Airbus GmbH

STAR-Dundee

SpaceFibre Interface Chip Parallel and GMII Test Board

Together ahead. RUAG STAR-Dundee

SpaceFibre Interface Chip Parallel/GMII Board Architecture

37

STAR-Dundee Parallel/GMII Test Board

STAR-Dundee Parallel/GMII Test Board

STAR-Dundee Tests with Parallel/GMII Test Setup

- Parallel Interface Tests
 - Sending Data from the Parallel-TX Interface over SpaceFibre
 - Receiving Data from the Parallel-RX Interface over SpaceFibre
- GMII Tests
 - Sending and receiving data over Ethernet via GMII interface

STAR-Dundee Parallel Interface Test Setup

Parallel Interface Testing

Complete

STAR-Fin	e Mk3 Link Analyser () er – View – Lind – P	23190000] Isuice Help														-	0
04 D	0 6 0	< 0 M															
	- 00	, O 14															
zowork. Vicav		Chart Texe	41 m	Port T	ma : 157 008 535 mm	Sume Times A re-	Minor Own	0.355625.mm	Main: 5	Dans 48 820125 mm	Total another 357 008 504 mm						_
		Sarting	. ••u na	Ling in	1987 200 MALEPID 198	ayre mar and	Piner state.	8.703023185	Page 3	ap, 40 dations	Total Langer: Lastrada were						
	SpaceFibre	4															
mbd Vew		_										Ø X P	icame View				
1911 1871	Symbol 1	Symbol 2	Symbol 3	Symbol 4	Tx 2 Word	Rx 2 Word	Symbol 1	Symbol 2	Symbol 3	Symbol 4		*		VC2	+1x2		
l8 ns	0xE0	0x40	43×01	0x57	DATA (INSTERATED)	PR85	0253	0x68	0x27	0x35			224 ns	507 (64 word.,			
12 ns	0aE1	0240	0x6A	Dx57	DATA (DESTERATE1)	1925	0±03	Oara .	Dog B	Ux85		•	1.26 ps	ED: (Seq (15)			
6 ns	OuE2	0x40	0x6A	Gx87	DATA (DEBTERACE2)	ERBS	0x27	0x04	0000	0xD6			1.296 µs	SDF (64 word.,			
ns	0x83	0040	0x68	0x87	DATA (0x876840E3)	PRBS	0x62	0x87	Cores	Cos E.7			2.352 µs	ED7 (Seg +16)			
i ns	Oct II-1	0x40	020634	0x87	DATA (0x07684004)	PRDS	0x07	0x53	0x53	Dot 945			2.368 µs	507 (64 word.			
2 ns	0x25	0x40	0106A	0x87	DATA (INSTERATES)	51F (5EQ +1, CRC 0xD5)	Come	517	0x01	DxD5		;	3.424 µs	EDT (Seq +17)			
H us	0xE6	0240	0x6A	Dx57	DATA (EXBYEA4LEE)	1935	0x42	0a05	0x39	0x81		:	3.44 ps	305 (64 word.,			
4 ns	0xE7	0x40	0x6A	6x87	DATA (CNB76R4CE7)	ACK (SE0 +13, CRC 0xA5)	Conna	ACK	000D	0085			4.496 µs	EDF (Seq +18)			
0 ns	0xE0	0x60	0.063	0x87	DATA (C%87624CEE)	PRSS	0x04	0.019	0385	0216			4.512 µs	SD7 (64 word.			
6 ns	000239	0#40	0.000	Dx87	DATA (CXBTGM(E9)	PR05	0279	0x30	100E	Dec 6-6			5.568 µs	ED7 (Seq +19)			
12 ns	0xEA	0±40	A5020	Dx87	DATA (CHETERATER)	FR85	0255	0sFD	0x02	Dec 94			5.584 µs	307 (64 word.,			
28 ns	UnEB	0240	Adu D	0x57	DATA (CHEYEARCEE)	1185	0#32	0x74	1256	UseE			6.64 µs	ED5 (Seq. (20))			
44 ns	OwEC	0x40	0.x6A	0x87	DATA (CHB76R4CEC)	PRBS	0x08	0xEE	0x5A	000CA			6.656 µs	SDF (64 word.,			
GO ns	(orFD	0#40	4300	0×77	DATA (CXRTGN/CED)	PRDS	Ow R.C	0x49	0x0B	000CE			7.712 µs	ED7 (Seg +21)			
76 ns	Owne	0#40	0.000	0×87	DATA (CXSTGMCEE)	PR55	0#53.	OxED	1x4E	Doc 8.9			7.728 µs	507 (64 word.,			
92 ns	OwEF	0240	Aba0	5x57	DATA (DESTERATORY)	1835	0.259	0xCB	1x28	Doc18			8.784 ps	EDT (Seq +22)			
08 ns	EDF	20±0	0x5B	Cx5C	EDF (SED (14, CRC 0a50	. 2188	0162	0.848	1x06	0x55			8.8 µs	305 (64 word.,			
24 ns	Comma	SDF	0.002	0000	SDF (VC 2)	PRBS	0x9F	0880	0x01	0x90			9.856 µs	EDF (Seq +23)			
10 ns	0x70	0#40	0268	0×17	DATA (0×07604070)	PRDS	0#01	0x07	0x75	for F7			9.872 µs	507 (64 word			
56 ns	0xF1	0#40	0.00 EA	0x87	DATA (EXSTERATE)	PR35	0x05	0x39	1x11	Dot 0-4			10.928 µs	EDT (Seq +24)			
72 ns	0xF2	0240	Gardi A	0x87	DATA (DEBYERADI2)	1885	0x14	0a:64	0x877	Doc45			10.944 ps	305 (64 word.,			
88 ns	OuF8	0x40	0x6A	0x87	DATA (DEBYERADIS)	PR85	0135	0833	DxF4	0x57			12 µs	EDE (Seq +25)			
14 ns	OxF4	0#40	0.06Å	0x87	DATA (0x876B4074)	PRBS	OxCA.	ONEA.	1069	0x06			12.016 µs	SDE (64 word.			
20 ns	0x75	0#40	0263	0:07	DATA (DEDTEMOTE)	PRDS	0x71	0x07.	1837	Des 117			13.072 µs	RDT (Seq +26)			
36 ns	Oxf6	0±40	0x6A	0x87	DATA (DXBTER4DIE)	PR35	0x58	0298	0x67	0x2C			13.088 µs	507 (64 word.,			
52 ms	Ual ²⁷	0240	0x6A	Dx57	DATA (EXEVERALLY)	1885	0142	0x7A	1x71	DaC9			13.36 ps	E02			
i8 ns	OuF8	0x40	01068	Cx87	DATA (EMB76R4078)	FRBS	0#83	0892	106F	0xE5		:	14.144 µs	EDF (Seq +27)			
34 ns	0xF9	0#60	0.063	0x87	DATA (0x87684075)	PRSS	0xBF	0x18	1226	0x8A			14.16 µs	SDF (64 word.			
00 ns	0x77	0#40	0263	Dx87	DATA (DXDT6MOTA)	PRDS	0#43	0207	0:03.5	00:17			15.216 µs	EDT (Seq +20)			
lő ns	0.0278	0x40	02068	0x87	DATA (INSTERATIS)	PRBS	36x0	0x04	0000	Do: FC			15.232 µs	507 (64 word.,			
32 m	0aPC	0240	0x6A	Dx57	DATA (EXEVERATEC)	1885	0±01	0a03	Dx1B	Data			16.200 ps	EDE (Seq 129)			
48 ns	OwPD	0x40	0.06A	0x87	DATA (DEB76R40FD)	PRBS	0x29	0821	0x8B	OULAE		:	16.304 µs	SDE (64 word.,			
64 ns	On FE	0:040	0.068	Dx87	DATA (0x8768407E)	PRBS	0x06	0x24	0x34	0x43		4	17.36 µs	EDF (Seg +30)			

STAR-Dundee Parallel Interface Testing

P	STAR-Fir	re Mk3 St	tatistics [Serie	al #23190009]							- 0	X
C	evice: STA Virtual Cha	kR.Fire → amela	• SpFi Port: Droadcasts	1 •			1.91	Gbit/s			Close to 100% link utilisation	/6 1
	Virtual Channel	Data En Count	or EEP Count	Tx Throttling Data Rate (%)	Bandwidth Reservation (%)	Rx Data Rate (Gbp	Tx Data Raty (Gbps)	RxLane Utilisation (%) L	Tx Lane Julisation (%)	Receive Lane L	Jilliatier (%)	
	0	SpW	SpW	100	31	0.000	0.000	0	D			100
	1	SpiV	SpW	100	9	0.00/	0.000	0	D			
	z	0	0	100	9	1.910	0.000	96	D			
	3	OFF	OFF	100	9	0.000	0.000	0	D			
	4	OFT	OFT:	100	9	0.000	0.000	0	0			
	5	OFF	OFF	100	9	0.000	0.000	0	0			0
	6	OFF	OFF	100	9	0.000	0.000	0	0			
	7	OFF	OFF	100	9	0.000	0.000	0	0	Transmit Lane I	Utilisation (%)	
				Comb I and I	Witer Marco 17							0
	Pau	90 90	Clear	Graph Lane L	itiisation: 🗠							
-	*star-du	ndee										2.01
Re	edy											12

GMII Test Set-Up

STAR-Dundee GMII Test Setup

STAR-Dundee Ethernet Loopback Test Results

SpaceFibre Interface Chip ASIC Feasibility

Together ahead. RUAG

STAR-Dundee ASIC Feasibility

- ASIC feasibility was carried out by ISD
 - With support from STAR-Dundee
- Target technology
 - C65SPACE
 - Technology and packaging is qualified
 - Radiation tolerance well characterised
 - Could also consider finer technology e.g. 28nm
 - Principally for improved SerDes

STAR-Dundee Top Level Architecture

STAR-Dundee Design Flow for Technology Independent Part

- Synthesis for STM 65nm
 - RTL (VHDL-2008) translated to gate-level netlist
 - Using standard cells provided in STM libraries
 - Synthesis with Synopsis Design Compiler
 - Problems encountered because the tool did not support all VHDL-2008 features
 - Several iterations of re-design were performed to get around these limitations
 - Smaller memory blocks were synthesised as registers
 - Larger ones replaced with "black box" memory
 - Timing constraints applied
 - Operating conditions include worst case 1.10V and 125°C
- Constraints covered:
 - Clocks
 - Reset
 - Max/min delays
 - Input/output delays
 - False paths

STAR-Dundee Design Flow for Technology Independent Part

- Synthesis Results
 - No significant timing violations were reported.
 - No violated paths were reported from the report_timing command.
 - Hold violations were reported
 - Expected in the Synthesis process
 - Because the clock and reset trees are added during Place and Route step
 - There were minor warnings from the check_timing command.

STAR-Dundee Design Flow for Technology Independent Part

- Formality Run
 - After synthesis
 - Logic equivalence checks performed
 - To ensure correctness of design
- Comparison completed without errors
 - 277331 matched points
 - 34 unmatched points
 - All in the reference and considered as acceptable
 - Because a lot of registers in the reference were removed during synthesis
 - they are either constant or never read
 - they have no counterpart in the implementation

STAR-Dundee Chip Area Estimation

- Technology independent part
 - Place and route figure of 9mm²
 - Place and route density of 65% assumed giving 14mm²
 - Larger memories set as black boxes and area calculated as 3mm²
 - Total for Technology independent part = 17mm^2
- Technology dependent part
 - One High-Speed Serial Link (HSSL) $block = 5mm^2$
 - SPI interface, clock management and some glue logic estimates as 3mm²
 - Total for technology dependent part = 8mm^2
- Pad ring
 - Total area technology independent and technology is 25mm²
 - Estimate of 313 signal, power and ground pins
 - Pad ring is 0.5mm across
 - Chip size (square chip) is $(SQRT(25) + 0.5 + 0.5)^2 = 36 \text{mm}^2$
 - Package is 256 pin with some IO sharing pins

SpaceFibre Interface Chip Conclusions

Steve Parkes (CTO) STAR-Dundee Ltd.

Together ahead. RUAG

TSTAR-Dundee Study Achievements

- A SpaceFibre interface chip has been specified, designed, verified in simulation, and validated in a hardware prototype
 - Two SpaceFibre ports (nominal and redundant)
 - Operating at data rates of 1, 2.5, 3.125 and 6.25 Gbit/s baud rate
 - Highly configurable bridging modes including:
 - SpaceWire bridging to up to 12 SpaceWire ports
 - Each mapping onto a separate SpaceFibre virtual channel
 - Operating at up to 200 Mbit/s
 - Parallel bridging to up to two parallel ports
 - Independently configured as inputs or outputs
 - Operate at 2.5 Gbit/s each using a 78 MHz DDR clock (higher data rates also possible)
 - Two SpaceWire ports available when both parallel ports are used
 - Seven when just one parallel port is used.
 - Gigabit Ethernet bridging
 - With SpaceFibre Interface Chip acting as GMII PHY and operating at 1GbE speeds
 - GMII interface is configured in place of one of the Parallel ports.

STAR-Dundee Study Achievements

- 32-bit GPIO interface
 - With multiple operating modes including
 - Data input/output
 - I2C and SPI interfaces
 - System time
 - Time-codes
 - Chip status
- Supports remote FPGA programming over SpaceFibre
 - Using a JTAG or SelectMAP programming interface to the FPGA.
- Configuration of the SpaceFibre Interface Chip itself
 - Over SpaceFibre, SpaceWire and local SPI interface
 - Initial configuration setting via the GPIO port
- Designed to fit in a package with around 256 pins
- SpaceFibre Interface Chip specified, designed, verified in simulation and validated in FPGA-based, hardware prototype
- Feasibility of transfer to radiation tolerant ASIC technology evaluated and confirmed through initial synthesis and formality check

STAR-Dundee Summary and Conclusions

- SpaceFibre Interface Chip
 - Extremely versatile and high-performance SpaceFibre Interface Chip
 - Designed
 - Implemented in VHDL
 - Verified through simulation
 - Validated in prototype hardware
 - Meets the requirements defined by ESA, Airbus, RUAG Space and STAR-Dundee
- SpaceFibre Interface Chip test results were
 - Compared against the chip specification in a verification matrix
 - Total of 179 specifications
 - Four deleted because they were no longer relevant
 - Nine were not implemented, with agreement from ESA
 - Of the remaining 166 specifications
 - 6 were partly implemented
 - 160 fully implemented and verified using a mixture of hardware testing and simulation

STAR-Dundee Summary and Conclusions

- Feasibility of migrating this design to a radiation tolerant ASIC
 - Assessed with an initial synthesis in STM 65nm technology
 - Results of this synthesis were successful
 - Formality check also performed with success
- Expected chip size was calculated
 - 36mm²
- Outline plan provided moving towards ASIC implementation