
IMPARO

Impact of anomalies and non-conformances on future requirement formulations

European Space Agency

© GMV – All rights reserved

Index

1. Introduction

- 2. ESA needs & objectives / How AI can help?
- 3. Sources: Knowledge Graph Inputs
- 4. Strategy to extract Information
- 5. IMPARO Demonstration
- 6. System extensions Proposal
- 7. Management considerations

Introduction

The main objective is to summarize the main features and considerations of the project executed to provide a solution to the Tender: **"Impact of anomalies and non-conformities on future requirement formulations"**.

- Contractor: Big Data & Artificial Intelligence Division from GMV Secure e-Solutions (GMV-SES).
- <u>Customer</u>: European Space Research and Technology Centre, Software Technology Section (ESTEC/TEC-SWT) from ESA.

THE MAIN DATES OF THE PROJECT WERE AS FOLLOWS:

ESA needs & objectives

The main objective is to summarize the main features and considerations of the project executed to provide a solution to the Tender: "Impact of anomalies and non-conformities on future requirement formulations".

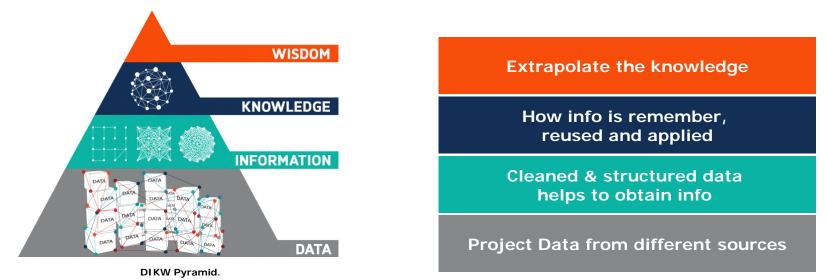
OBJECTIVES:

- Exploit lesson learn to improve future Space Mission ESA development.
- Conceptualize & formalize in a structured and well-defined ontology the space mission domain.
- Transform project data into knowledge.
- Bring benefit from Artificial Intelligence to Space Mission ESA development.

CHALLENGES:

- Information overload: outdated information, excessive number of documents & redundancy/duplicity.
- Complex & unconnected data: large volumes of data & unstructured.
- Lack of information standardization: heterogeneous sources & representation, ambiguity & difficulty to share info.

HOW:


- Building a Knowledge Graphs based on a defined ontology.
- Applying AI & programmatic rules to gather information from unstructured data.

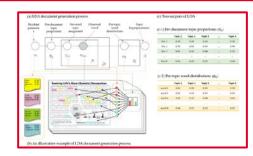
ESA needs & objectives

User story

• A possible user story/example is the following:

As CDF Mission/System Engineer during Pre Phase A, I want to get Lessons Learned/Anomalies/Alerts concerning my mission/system concept (e.g. "Design of Entry Descent and Landing of a Probe in the atmosphere of a planet").

Source: https://www.ontotext.com/knowledgehub/fundamentals/dikw-pyramid/


How AI can help?

Programmatical Project Data approach Data Programs Rules Answers Project Data Rules Machine Learning Machine Learning Predictions [Answers] Knowledge Knowledge Data Knowledge Graph Graph Machine Explanations Learning

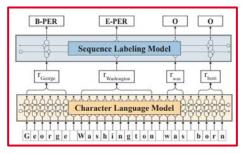
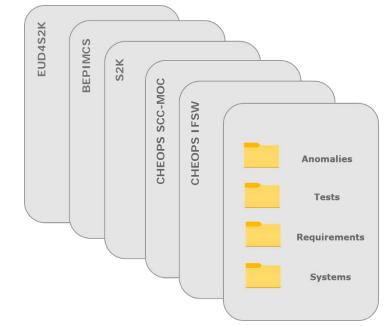

OVERVIEW

Figure: Adapted from Knowledge Graphs: The Third Era of Computing by Dan MCreary

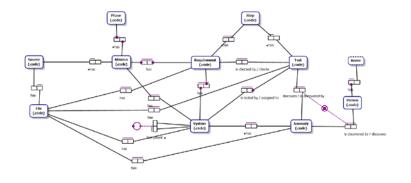
Machine Learning

Latent Dirichlet Allocation to discover topics from documents.


Named Entity Recognition to identify entities within a context.

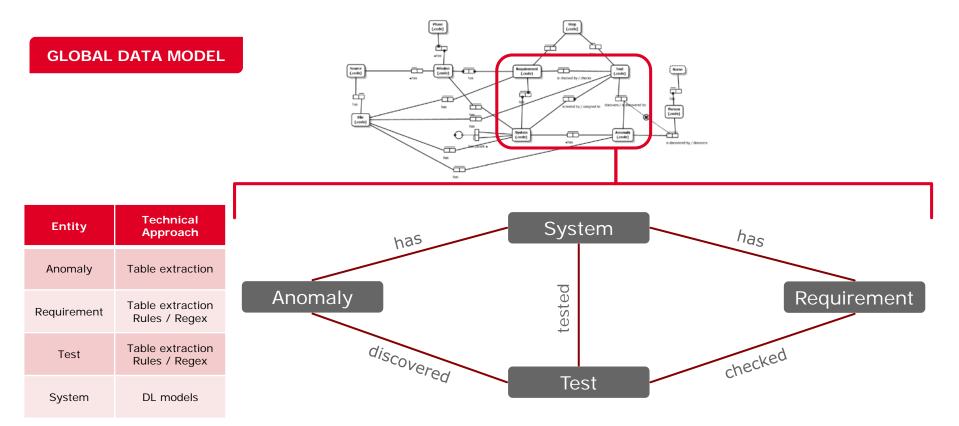
Sources: Knowledge graph inputs

- Management Documents (Documentation Control List, SW Release Notes, Glossary)
- ✓ Issues and RIDs (Jira, Redmine, ARTS)
- Configuration and Installation Guides
- ✓ Software Requirements (SR)
- Software User Manuals (SUM)
- Technical Notes (TN)
- ✓ Test Documents (SVTD, STP)
- ✓ Software Design Documents (ADD, DDD)
- ✓ Interface Control Documents (ICD)
- ✓ Concurrent Design Facility (CDF)


✓ RELEVANT DOCUMENTS

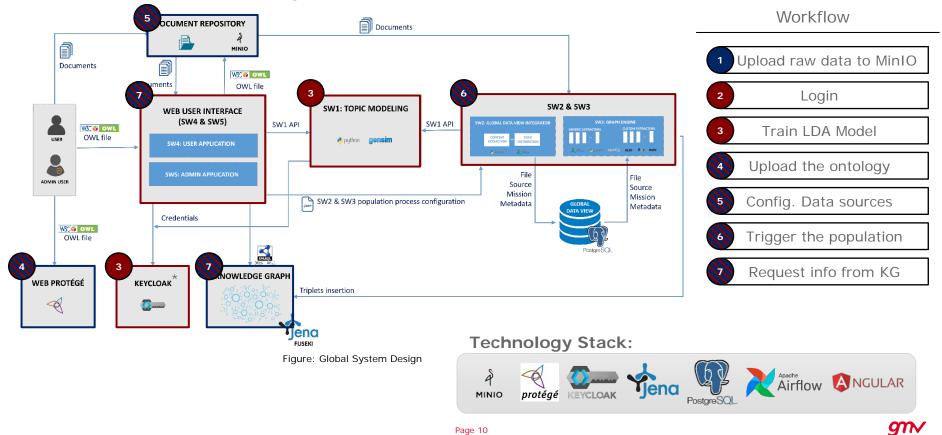
Strategy to extract information

GLOBAL DATA MODEL


ONTOLOGY

Classes	Object properties
Class hierarch	y :
1+ C+ 🕅	
ow: Thing ow: Thing ow: Thing ow: Thing out o	aly on e t t rement re
e Topic	s Relations

Ontology metrics		
Axiom	849	
Class	35	
Object property	67	
Data property	53	


Strategy to extract information

Workflow

Population of the Knowledge Graph

Developed services Third party services

Implemented solution

Developed Services

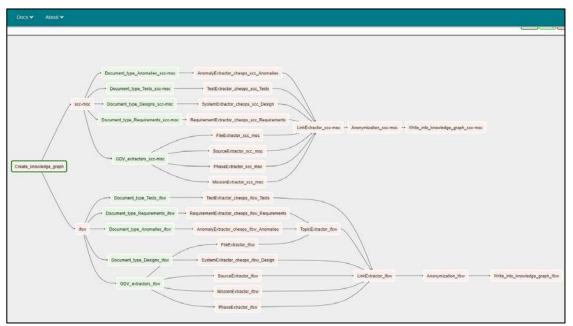
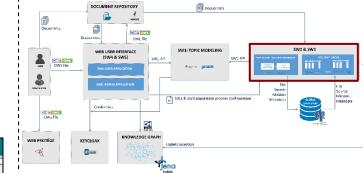



Figure: Dynamic Computational Graph for the orchestration of the tasks (standardization, semantic extraction, topic modelling, etc.)

IMPARO Demo

From a CDF Mission / System Engineer

As CDF Mission / System Engineer I want to compare a new mission to be launched with previous ones in order to prevent anomalies and improve the specification in a particular system. I am interested in the IASW system, namely:

- What requirements were applied ?
- What anomalies were detected?
- What tests were used to detect the anomalies?

From a Administrator User

- Model management
- Anonymization
- Knowledge Graph Population

IMPARO Demo

IMPARO

Impact of Anomalies and non-conformances on future Requirement formulations

Figure: IMPARO Web Interface

System extension proposal

- Automatic method to measure the performance of the LDA model trained.
- Management of the False Positives and False Negatives in the Knowledge Graph.
- Incorporating the ability to read other types of table (embedded in the text documents) formats.
- Take advantage of **section structure** in the documents to extract the relevant information.
- Add a **reasoner** to the system to infer new instances and relationships.
- Add sources to the Knowledge Graph in an incremental mode.
- Use the glossary of terms as a thesaurus and **unify instances**.
- Improve web application usability and functionalities.

Management considerations

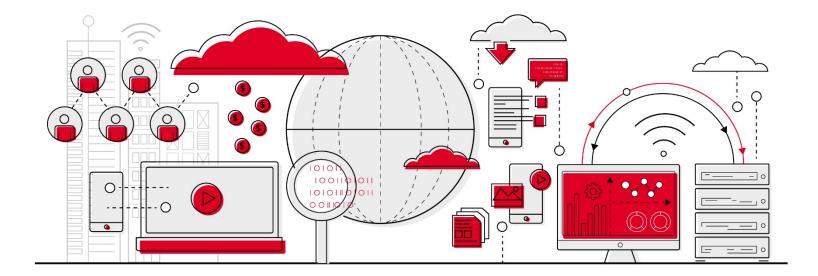
Project executed under Agile Culture following the SCRUM Framework:

- Team Dailies.
- **Sprint Reviews** every three weeks showing the progress, Deliverables state, the Roadmap for the rest of the project, the goal for the next Sprint and others considerations to discuss.
- **Sprint Planning** defining next steps and the **main goal** to the next Sprint.
- Backlog refinement and priorities review with ESA.
- Retrospectives to improve teamwork.

Management considerations

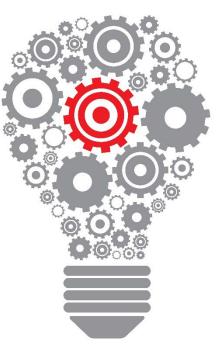
The main aspects that have helped us to work successfully are the following:

- Excellent **Teamwork**. ESA and GMV very good **communication and collaboration**.
- Frequent reviews of ESA expectations.
- Continuous Risks Management.
- Easy interaction through Redmine to handle RIDs and defects.
- Statement of Work vs Requirements traceability.
- Improved **development** of different software components **in parallel**, allowing ESA to **evaluate the complete system** as soon as possible.



Management considerations

THANK each and every one of the people who have participated in the project.


Final questions and comments

gmv.com

Thank you

GMV BDA

© GMV – All rights reserved

GMV-CONFIDENTIAL