

Qualification of RTEMS Symmetric Multiprocessing (SMP)

Final Presentation Days

07 & 08 December 2021

→ THE EUROPEAN SPACE AGENCY

- Budget: 700K
- Duration: 2.8 years
- Consortium: Edisoft, Embedded Brains, LERO, Jena-Optronik, CISTER
- Main Objective:
 - This activity provides a QDP for the open source RTEMS real-time operating system with symmetric multi-processing capabilities. It is compliant with ECSS applicable standards for software engineering and software product assurance.

Background

- GSTP activity started in February 2019, consortium is composed of:
 - EDISOFT (Portugal consortium lead) → RTEMS qualification experience, strong ties with industry
 - Embedded Brains (Germany) \rightarrow RTEMS SMP development expertise, strong ties with community
 - LERO (University of Limerick, Trinity College Dublin, Ireland) → formal methods expertise
 - Jena-Optronik (Germany) \rightarrow end user in space domain, application qualification expertise
 - CISTER (ISEP/P, PORTO, Portugal) → real-time software and software qualification expertise

Objectives

- Facilitation of RTEMS SMP Qualification
- Reduce lifecycle of each release of "Qualified" RTEMS
- Apply Formal Methods Verification (e.g. for OMIP and MrsP Algorithms)
- Port RVS3000 to RTEMS SMP (Coordinate transformation of point cloud)

Qualification RTEMS SMP Task: RTEMS SMP Qualification Data Package (Embedded Brains)

Sebastian Huber (Embedded Brains)

ESA | November 2021 | Slide 7

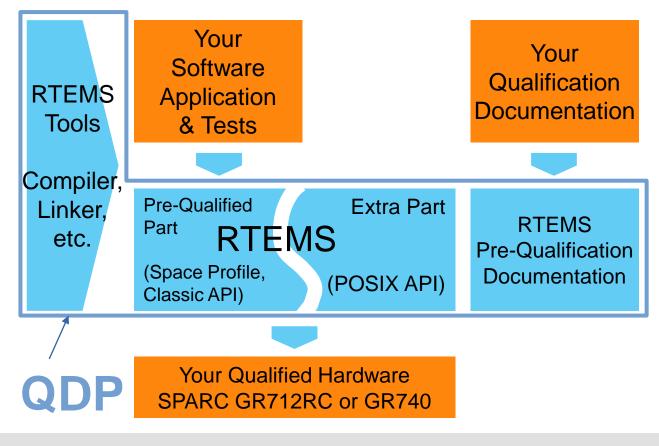
ESA UNCLASSIFIED - For Official Use

→ THE EUROPEAN SPACE AGENCY

What is in the QDP?

- Delivery in **two parts**: SCF + archive file
- SCF: may be digitally signed, secure hash of archive, root of trust
- Binaries and sources of needed tools (compiler, linker, provided "as is", ready to distribute)
- Pre-qualified part of RTEMS operating system
- Extra (not pre-qualified) part of RTEMS
- Documentation (RTEMS, ECSS, technical notes)
- Other stuff (sources, tests, Dockerfile)

What Do You Need to Get Your Application Qualified?



- Hardware: based on Gaisler GR712RC or GR740
- System requirements (what shall your application do?)
- Application software realizing those requirements
- Uses pre-qualified parts of RTEMS
- Built by tools from QDP
- Documents showing that ECSS standards are met by your application (may reference documents provided by QDP)
- Qualification authority to escort the development of your application (usually ESA)

· = ■ ▶ = = + ■ + ■ ≡ = = ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

How is the QDP used?

The set of th

+

Pre-Qualfied RTEMS Features

- The Real-Time Executive for Multiprocessor Systems (RTEMS) is a multithreaded, single address-space, real-time operating system with no kernelspace/user-space separation
- Thread synchronization and communication: mutexes, message queues, semaphores, events, barriers, signals, futex
- Locking protocols: transitive priority inheritance, priority ceiling, Multiprocessor Resource Sharing Protocol (MrsP), O(m) Independence-Preserving Protocol (OMIP)
- Clustered scheduling (SMP feature)
- Scalable timer and timeout support
- Lock-free timestamps (FreeBSD timecounters) with NTP support
- C11/C++11 thread-local storage

Which Documentation will be provided?

- **Software Configuration File (SCF)** accompanies QDP, overview, content, tutorial, space profile what has been pre-qualified?
- Standard RTEMS Documentation
 - RTEMS Classic API Guide description of RTEMS and its API
 - RTEMS User Manual how to use RTEMS?
 - RTEMS Software Engineering how to maintain RTEMS?
- QT-109
 - Core document which includes the planning & content of documents
 - ECSS tailoring and compliance matrix
 - Analysis of other standards such as IEC 61508
- Interface Control Document (ICD) & Software Requirement Specification (SRS) requirements
- Software Verification Report & SPAMR verification documentation for qualification

Performed Software Engineering Activities

- Requirements engineering chapter for RTEMS Software Engineering manual
- Review of the complete source code of the pre-qualified RTEMS feature set
- Specification of pre-qualified feature set of RTEMS using the Easy Approach to Requirements Syntax (EARS)
 - EARS problem: lots of atomic requirements
 - Solution: table based specification with generated validation test code
- New build system for RTEMS using specification items
- Development of the RTEMS Test Framework
- Validation tests are embedded in the specification items, validation test code is generated
- More than 50000 atomic requirements are validated: 100% line and branch coverage at source code level on systems with at least three processors

Which Verification Activities have been performed?

Verification checks that all project activities meet ECSS standards

- Documents: svr.pdf and spamr.pdf in QDP
- Automated verification where possible
- Static Analyzer: Coverity, Clang Static Analyzer, Cppcheck
- Anticipated for 2022 (Kick-off December 2021): Independent Software Validation and Verification (ISVV) to meet Criticality Category B.

What is not Included in QDP?

- Training
- Support services
- Expert knowledge to
 - Customize the QDP
 - Support new architectures/BSPs
 - Extend the pre-qualified scope (e.g. POSIX, OpenMP)
- Long term maintenance

Service providers

Qualification RTEMS SMP Task: Qualification Tool Chain (EDISOFT)

José Valdez (EDISOFT)

ESA UNCLASSIFIED - For Official Use

ESA | December 2021 | Slide 16

→ THE EUROPEAN SPACE AGENCY

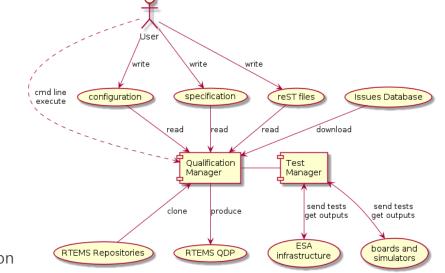
Objectives

- Preliminary work:
 - Define the space profile to be used for RTEMS
 - Standard analysis to assess the possibility to extend this work to other standards (GSWS, DO-178, ISO 26262 and IEC 61508)
 - Open source Tools identification that could be integrated in the Qualification Toolchain
 - Assess the possibility of reuse parts RTEMS Improvement QDP for this project
- · Qualification Toolchain
 - RTEMS and RSB Compilation (provide to the end users already compiled binaries and testsuite automatic execution/analysis
 - Produce the ECSS documentation (as needed for Category B)
 - Produce a solution easy to maintain (with docker and CI)
 - Follow RTEMS community guidelines (to foresee a future integration)

= II 🛏 :: 🖛 + II 🖛 🔚 = II II = = : :: 🖬 🛶 🔯 II = :: II 🕬 💥 🕯

•

Qualification Toolchain – Concept



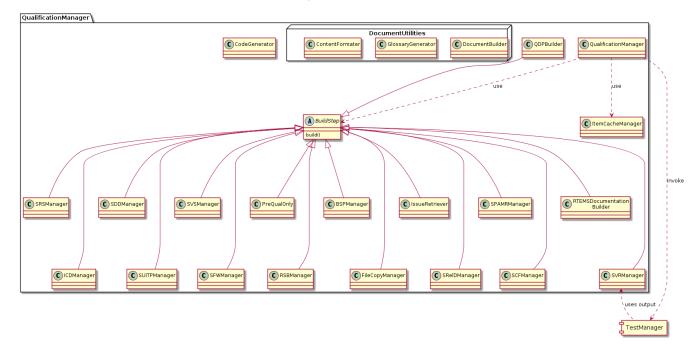
Inputs:

- · Configuration files
- · Specification files
- · Sphinx files
- RTEMS Repositories
 Output:
- · RTEMS QDP

Main features:

- · Qualification automatization
- · Allows CI (via docker)
- · Allows keeping up to date with RTEMS community
- · Allows easy addition of features (ex: new BSPs)
- · Automatic traceability
- Automatic RSB, RTEMS build, testsuite execution, result analysis and report generation

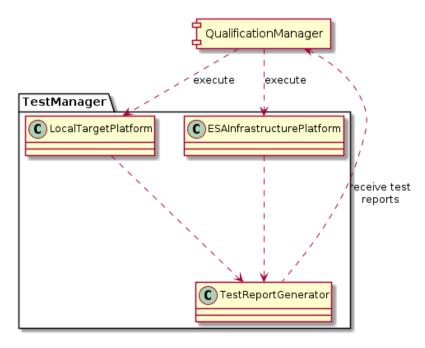
18/


•

European Space Agency

Qualification Toolchain – Qualification Manager

Components of the Qualification Manager (cat. D qualification)



 .

Qualification Toolchain – Tests Manager

Components of the Test Manager (cat C. qualification)

= 88 🛌 #= #= 88 🚍 🚝 == 88 88 == 88 🛶 🚳 88 == 88 89 💥 👘

21/

+

Test Manager – Test Processing (1/3)

Requirements and test status summary table

Requirement	Test specification	Test name	Status
spec:/score/smp/req/fatal- multitasking-start-on-unassigned-	spec:/score/smp/val/fatal	ScoreSmpValFatal	Р, Р
processor			
spec:/rtems/task/req/perf-runtime	spec:/rtems/task/val/perf	RtemsTaskValPerf	Р

By clicking on the status ("P"), it jumps to the full report

7.1.14.1 Test Case - ScoreSmpValFatal

In this test case 12 test steps were executed. All steps passed. The test case execution time was 0.000001s.

Listing 13: Test Log

B:ScoreSmpValFatal E:ScoreSmpValFatal:N:12:F:0:D:0.000001

24/

*

Test Manager – Test Processing (2/3)

Performance metrics status summary table

Requirement	Test Measurement	Status
/rtems/task/req/perf-construct	RtemsTaskReqPerfConstruct	<i>P</i> , <i>P</i> , <i>P</i> , <i>P</i> , <i>P</i>

By clicking on the status ("P"), it jumps to the full report

Runtime Measurement - RtemsTaskRegPerfConstruct (FullCache)

100			requent	y Distri	bution (LOO Sam	iples)	_
50 · p1	MAD =	0.000µs						Q3 Q2
0 1.6400	1.6425	1.6450	1.6475	1.6500	1.6525	1.6550	1.6575	1.6600
		His	togram	(Bin Wid	th 0.010)µs)		
20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -								

Table 1: Limits Specified by spec:/rtems/task/req/perfconstruct vs. Actual Values

Limit Kind	Specified Limits	Actual Value	Status
Minimum	1.312µs ≤ Minimum	1.640µs	OK
Median	$1.328\mu s \le Median \le 1.992\mu s$	1.660µs	OK
Maximum	Maximum $\leq 1.992 \mu s$	1.660µs	OK

25/

*

×

Test Manager – Test Processing (3/3)

Coverage summary html report:

GCC Code Coverage Report

Directory: /	Exec	Total	Coverage
Date: 2021-12-02 00:49:36	s: 8045	8059	99.8%
Legend: kw: >= 0% medium: >= 80.0% high: = 100% Branch	s: 2056	2061	99.8%

File	Lines	Brar	iches
<pre>bsps/include/bsp/fatal.h</pre>	100.0% 2/2	-%	0/0
<pre>bsps/include/bsp/irg-generic.h</pre>	100.0% 35 / 35	100.0%	6/6
<pre>bsps/shared/grlib/uart/apbuart_polled.c</pre>	100.0% 15 / 15	100.0%	4/4
<pre>bsps/shared/irg/irg-affinity.c</pre>	100.0% 20 / 20	100.0%	14 / 14
<pre>bsps/shared/irg/irg-default-handler.c</pre>	100.0% 2/2	-%	0/0
bsps/shared/irg/irg-enable-disable.c	100.0% 22 / 22	100.0%	12/12
bsps/shared/irg/irg-entry-remove.c	100.0% 25 / 25	100.0%	10 / 10
bsps/shared/irg/irg-generic.c	100.0% 69 / 69	100.0%	30 / 30
<pre>bsps/shared/irg/irg-handler-iterate.c</pre>	100.0% 13 / 13	100.0%	6/6
bsps/shared/irg/irg-lock.c	100.0% 8 / 8	100.0%	4/4
<pre>bsps/shared/irg/irg-raise-clear.c</pre>	100.0% 22 / 22	100.0%	14 / 14
<pre>bsps/shared/start/bootcard.c</pre>	100.0% 4/4	-%	0/0
bsps/sparc/include/grlib/io.h	100.0% 5/5	-%	0/0
<pre>bsps/sparc/leon3/clock/ckinit.c</pre>	100.0% 29 / 29	100.0%	2/2
<pre>bsps/sparc/leon3/console/printk support.c</pre>	100.0% 21 / 21	-%	0/0
<pre>bsps/sparc/leon3/include/bsp/leon3.h</pre>	100.0% 30 / 30	100.0%	4/4
<pre>bsps/sparc/leon3/start/bspclean.c</pre>	100.0% 23 / 23	100.0%	16 / 16
<pre>bsps/sparc/leon3/start/bspsmp.c</pre>	100.0% 28 / 28	100.0%	4/4
<pre>bsps/sparc/leon3/start/bspstart.c</pre>	100.0% 9/9	-%	0/0
bsps/sparc/leon3/start/cache.c	100.0% 52 / 52	100.0%	3/3

48			
49	▶ 2/2	886	if (attributes == NULL) {
50		2	return RTEMS_INVALID_ADDRESS;
51			}
52			
53		884	<pre>memset(attributes, 0, sizeof(*attributes));</pre>
54			
55	▶ 2/2	884	<pre>if (!bsp_interrupt_is_valid_vector(vector)) {</pre>
56		35	return RTEMS_INVALID_ID;
57			}

+

+

European Space Agency

26/

Qualification RTEMS SMP Task: RTEMS SMP Formal Verification (LERO)

Andrew Butterfield (Lero)

ESA UNCLASSIFIED - For Official Use

ESA | November 2021 | Slide 28

→ THE EUROPEAN SPACE AGENCY

Objectives

- Explore the application of Formal Methods
- How would they best contribute to the QDP?
 - Which parts of RTEMS would benefit most?
- How would they best fit with RTEMS community principles?
 - Which formal methods and tools were most suitable?
- Deploy Formal Methods on a chosen set of features
 - Develop Formal Models
 - Perform Verifications
 - Develop supporting tools
- Focus: critical features such as synchronization primitives, multicore, atomics,...

· = ■ ► = = + ■ = ≡ = ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

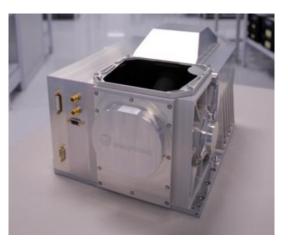
Work Performed

- Task 3.1 Initial Investigation
 - RTEMS community issues: software footprint, and future maintainability
 - Promela/SPIN deemed most suitable
 - others investigated included Frama-C, TLA+, Isabelle/HOL
- Task 3.2 Detailed work
 - Explore different ways to produce Promela models
 - Aim: use models for test generation
 - Perform case-studies to develop the approach
 - Chains API basic concepts, end-to-end, producing tests run on hardware
 - Event Manager concurrency, multi-core, how to produce repeatable tests
 - MrsP ThreadQs exploring modelling/testing for this critical component
- Task 3.3 Final Reporting

Qualification RTEMS SMP Task: RTEMS SMP Application Porting (Jena-Optronik)

Olivier Ballereau (Jena-Optronik)

→ THE EUROPEAN SPACE AGENCY


ESA | November 2021 | Slide 32

ESA UNCLASSIFIED - For Official Use

Objectives

- Migrate the RVS3000-3D device's software from EDISOFT RTEMS Improvement to RTEMS SMP to take advantage of the second gr712rc core
- Assess the ported application in terms of memory and performance
- Qualify RTEMS SMP in the Jena-Optronik gr712rc (run again the testsuite and re-generate the new Software Verification Report)

Work Performed (1/2)

- Task 4.1 Application Description & Architecture
 - Description of the RVS3000-3D hardware and software model
 - Selection of the managers to use: Clock Manager, Event Manager, Interrupt Manager, Scheduler Manager, Semaphore Manager, Task Manager and Timer Manager
 - Selection of the scheduler: EDF scheduler with one-to-one and one-to-all thread to processor affinity
 - Selection of the locking algorithm: O(m) Independence-Preserving Protocol (OMIP)

Work Performed (2/2)

- Task 4.2 Application Porting
 - Porting from GCC 4.2 to GCC 10.2, required some corrections (ex: double 'const' qualifier for a parameter, missing 'extern' qualifier when declaring a global variable in a header file,)
 - Migrate custom qualified math library to ESA MLFS
 - API Changes (ex: rtems_clock_get() replaced by rtems_clock_get_ticks_per_second()
 - Interrupt Locking: replace of rtems_interrupt_{enable,disable}() by rtems_interrupt_lock_{acquire,release}()/rtems_interrupt_local_{enable,disable}()
 - Conguration Changes (ex: disable Newlib re-entrancy)
 - Init Task: use new CONFIGCONFIGURE_INIT_TASK_CONSTRUCT_STORAGE_SIZE
 - Added SMP support in the application (ex: Communication and Synchronization)
 - Run the testsuite using GDB

Results and conclusions

- Task 4.3 Application Porting Report:
 - Memory overhead: newer versions of gcc introduce more code:
 - RTEMS 4.8 minimal application: 23812 bytes
 - RTEMS SMP minimal application: 68896 bytes
 - RTEMS SMP allowed a boost of 63% in time performance
 - QDP Testsuite run with test failures (under investigation) and the SVR generated successfully. Jena Optornik uses a gr712rc engineering model, whereas ESA uses a development board.

Qualification RTEMS SMP Project Outcome

Sebastian Huber (Embedded Brains)

→ THE EUROPEAN SPACE AGENCY

ESA | November 2021 | Slide 37

ESA UNCLASSIFIED - For Official Use

Project Outcome

Approach

- Code in line with the public (open-source) version of RTEMS 6
- Fully automated document generation and testing
- Application of Formal Methods for testing critical features

Results (for GR712 RC and GR740, based on "Space Profile"):

- Requirements added and code documentation completed
- Comprehensive validation test suite: Code optimization performed, line/branch coverage: 100%
- Tool chain to run tests and to produce QDP
- Use case test on GR712RC based OBC
- Criteria for pre-qualification according to Criticality Category C matched
- Formal Promela Models of selected RTEMS features used for Test Generation

Outlook

- Independent Software Validation and Verification started (\rightarrow Criticality Category B)
- Further support (Training, functional extensions) available by expert services

= !! 🛌 :: 🖛 + !! 🗯 🚍 !! !! = = = :: 🖬 🛶 🔯 !! = :: !! 🗮 🗮 💥 🛀

38/

Contacts

- QDP maintenance and questions:
 - EDISOFT: <u>nuno.ramos@edisoft.pt</u> / jose.valdez@edisoft.pt
 - Embedded Brains GmbH: <u>rtems@embedded-brains.de</u>
- Formal methods questions: <u>andrew.butterfield@scss.tcd.ie</u>

+

Questions

European Space Agency

+