

Liberté Égalité Fraternité

Focus on physical modelling and usability improvements of SPIS in the frame of SPIS-ASPOC and SPIS-LISA projects

<u>Pierre Sarrailh</u>, Sebastien Hess, Marc Villemant Benjamin Jeanty-Ruard, Arnaud Trouche, Julien Forest ONERA, DPHY Artenum

Introduction and context

- SPIS-ASPOC:
 - ESA ITT AO/1-8620/16/NL/LF "Modelling of Electrostatic Environment of Ion Emitting Spacecraft"
 - New models to improve the physical modelling of the electrostatic cleanliness of an ion emitting spacecraft
 - Improvement of the performance and usability
 - Validation wrt Cluster spacecraft inflight data

- Management
- Software requirements
- Physical model developments
- ☆ Numerical core improvements & development
- ✓ Sofware verification

- Software requirements
- Ser interface improvements
- ☑ Packaging

- User requirements
- Validation with cluster data

SPIS-LISA:

•

- ESA ITT AO/1-9266/18/NL/IB/gg "Development and Validation of a Contamination package in SPIS for liquid based electrical propulsion subsystems for LISA : SPISesa Microthruster project"
 - Improve or develop models of erosion and contamination, liquid ion source models and droplet behavior
 - Validation wrt experimental data / application to LISA mission

- Management
- Software requirements
- Physical model developments
- X Numerical core improvements & development

☑ Software verification

DEFENCE & SPACE

User requirements

Validation

 ∇

SPIS-EP Limitations (version 6.0)

SPIS-EP Limitations (version 6.0)

4

5

SPINE Meeting 2021 – Focus on physical modelling and usability improvements of SPIS – P. Sarrailh

Thin wires

- No changes for the definition in UI
- Thin wire approximation has been rewritten and improved to allow:

1) Bending booms

2) Wire approximation + mesh refinement

3) Connection between wires and surfaces

4) End of boom and radius change improvements

9

Low noise distributions based on PIC perturbative method

- PICPerturbationToAnalyticalVolDistrib: uses perturbative PIC model to correct analytical distributions.
- Analytical distributions for ions or electrons (from environment only / not for sources):
 - KineticMaxwellBoltzmannVolDistrib: Maxwell Boltzman approximation but with a better modelling of the density and temperature variations as a function of the potential (temperature computed to conserve total energy in an attractive potential: kT=kT0-qV)
 - DriftingMBVolDistrib: an extension of the above for drifting plasma. The geometrical effects due to the drift (e.g. wakes) computed using test particles
- Developped by Oriol Jorba Ferro (thesis 2018) to model Electric field probes for the TARANIS mission
- Now integrated in SPIS and tested with:
 - Wire approximation
 - Magnetic fields
- Useful to simulate cold and dense plasmas usually modelled with PIC method:
 - Solar wind, LEO plasmas, ...
 - Decrease the noise / increase the performance
- Not an implicit method → Debye length and plasma frequency have to be solved
- Cannot be used for a source at the surface

Electromagnetic sources and solver

- API modified so that distribution accept the most generic Efield class as input
- New capabilities for generalized EM fields:
 - Electric fields resulting from Poisson equation (Electrostatic)
 - Imposed static or variable electric field at the boundary limits or in volume (resulting from the plasma environment)
 - Static or variable magnetic fields imposed in volume (uniform, dipolar, solenoid)
 - EM waves imposed in volumes
 - EM waves resulting from MHD approximation

Solver with generalized Ohm's law details

- Maxwell equation with implicit electron current
- Assuming inertialess electrons

ONERA

THE FRENCH AEROSPACE LAB

Non-collisionnal plasma

RÉPUBLIQUE

FRANÇAIŠE Liberté Égalité Frateraité

- Can be used to create or transport EM waves in plasma at ions and/or plasma acoustic frequency
- Cannot be used to model electron instabilities or waves transport at the electron frequency

$$\begin{cases} \left(1 + \frac{v_A^2}{c^2} + \frac{v_A^2 \lambda_l^2}{c^2 \delta x^2 (1 - exp^{(-\delta x/\lambda_e)})^2}\right) E_V = \frac{(\nabla \wedge B_S) \wedge B_V}{\mu_0 e n_e} \cdot \left(1 - exp^{(-\delta x/\lambda_e)}\right) - \frac{J_{i;V} \wedge B_V}{e n_e} \left\{+E_{s;V}\right\} \\ \nabla \cdot E_{s;V} = \frac{\rho_N}{\varepsilon_0} \\ \frac{\partial B_V}{\partial t} = \nabla \wedge E_S \cdot \left(1 - exp^{(-\delta x/\lambda_e)}\right) \cdot \left(1 - exp^{(-\Omega_{ce} \delta t)}\right) \end{cases}$$

Magnetic coupling

- Improvements for convection field on surfaces
- Test with two metallic spheres:
 - connected or not by a resistor.
 - Could not be treated before.

Average surface potential on node

- EM solver test case:
 - Bx=5µT
 - Vsc=7500 m/s (y)
- The perturbation of the magnetic field is consistent with a drapping around the sphere.

Liquid Ion Sources

ONERA

THE FRENCH AEROSPACE LAB

- FEEP and Colloid Thrusters / also for ASPOC
 - Fitting model based on experimental parameters
 - Equivalent model for electrospray thruster
- User can also directly define the mass flow, current and/or voltage

Thruster: In-LMIS-2 onsetVoltage = 1000.0 [V] cathodeEmittedCurrent = 0.0 [A] Cathode = FieldEmissionCathode criticalTemperature = 600.0 [K] criticalCurrent = 6.0E-6 [A] cathodeVoltage = 770.0 [V] cathodeBeta = 115.0 impedance = 2500000.0 [ohm] acceleration_voltage = 5000.0 [V] interactorType = FEEP e-Temperature = 5.0 [eV] voltage = 5000.0 M e-Model = PICVolDistrib emitterNumber = 1.0 temperature = 300.0 [K] efficiencvExponent = 0.93 cathodeWorkFunction = 5.1 [eV] cathodeEmitterArea = 2.0E-15 [m2] interactorFlag = 1.0 cathodeEmitterGapDistance = 1.0E-5 [m] ▶ # In+-2 droplet-2

RÉPUBLIQUE

FRANÇAIŠE Liberté Égalité Frateraité

Contamination modelling

SPINE Meeting 2021 - Focus on physical modelling and usability improvements of SPIS - P. Sarrailh 14

Improvement of electric circuit solver

+3 V

- Improvement of the circuit solver performance and stability
 - Faster computation in most of the cases
 - Much more stable for all the applications
 - BUT: some cases are longer to run (previously at the limit of the stability)
- Accept SPICE netlist:
 - can define models for component, names and put comments
 - accept time varying I and V generators
 - includes SPICE's SIN, PULSE, EXP and PWL (piece wise linear)
 - allow comments
 - allow for the definition of models
 - easy to extend (simple API, based on the plugin philosophy)
- Included in the NRC test case, run in 4sec., included as a functional test (test at compilation)
- Possible to model current generator

ONERA

THE FRENCH AEROSPACE LAB

 \rightarrow useful for potential probes

RÉPUBLIQUE

FRANCAIŠE

Instruments as devices at the Group Editor stage

Group editor

- Possibility to associate an instrument to a spacecraft element directly in the group editor
 - To avoid the two stage definition of instrument support zone + instrument
 - To have pre-defined instrument settings for advanced users
- To associate several surfaces to the same instrument with the « deviceId » property. Usefull for multi sensor instruments.
- To combine instruments
- To associate "certain" instruments to wire elements
- Predefined instruments:
 - Impedance probe
 - Langmuir probe _
 - Elec. Antenna _
 - Search Coils _
 - Particle detector _
 - Potential/current probes _

_ r* m]

Group viewer

Antenna – Radio Receiver

- Electric field sensors defined by setting the "InteractorType" to "WaveSensor"
 - Define Min and Max frequencies
 - Wire instruments
 - Electric field vs time

Antenna – Radio Receiver

- Electric field sensors defined by setting the "InteractorType" to "WaveSensor"
 - Define Min and Max frequencies
 - Wire instruments
 - Electric field vs time
- Synthetic antennas created by combination of antenna

Antenna – Radio Receiver

- Electric field sensors defined by setting the "InteractorType" to "WaveSensor"
 - Define Min and Max frequencies
 - Wire instruments
 - Electric field vs time
- Synthetic antennas created by combination of antenna

ONERA

THE FRENCH AEROSPACE LAB

_ _ C Individual currents on spacecraft _ STAFF-SA-PSD-EField Average surface potential on nodes individual currents on spacecraft Total currents on spacecraft * - 5 5 STAFF-SA-PSD-EField 4 Curves Spectra power density Channel 1 Curves Spectra power density Channel 2 Curves Spectra power density Synthetic Channel 3 Curves_Spectra power density Synthetic Channel_3 STAFF-SA-PSD-EField 4 Curves_Spectra power density Channel_1 Curves_Spectra power density Channel_2 STAFF-SA-PSD-EField 1 STAFF-SA-PSD-EField 3 OEC 북 -5.6146E-1 5.1407E-1 \$ -1.1229E0 -1.0281E0 -1.6844E0 -1.5422E0 -2.2458E0 -2.0563E0 -2.8073E0 -2.5704E0 << << -3.3687E0 -3.0844E0 -3.9302E0 -3.5985E0 -4.4917E0 -4.1126E0 -5.0531E0 -4.6267E0 -5.6146E0 annels) -5.1407E0 -6.176E0 -5 6548EC OEO 5E2 1E3 1.5E3 2E3 2.5E3 3E3 3.5E3 4E3 1E3 1.5E3 2E3 2.5E3 3E3 3.5E3 463 147 OEO Hz EdgeGroup - 1053

- 5 0

• Outputs:

RÉPUBLIQUE

FRANÇAIŠE Liberté Égalité Frateraité

- Frequency Spectra
- Dynamic spectra

- Single and multi-channel particle detector as a device
 - Ion Particle Detector: that's detect the ions1 and ions2 popullations
 - Electron Particle Detector: that's detect elec1, elect2, photoElec and secondaryElec

RÉPUBLIQUE

FRANCAIŠE

Égalité

Exaterniti

- Electric field sensors defined by setting the "InteractorType" to "WaveSensor"
 - Define Min and Max frequencies
 - Wire instruments
 - Electric field vs time
- Create a multichannel PD in the live monitoring
- Possibility to visualize the fields of view

Instrur	mentlistviewer		ParticleDetector 0	Number of macro particles	Simulation control	Surface potential	Net current on spacecraft	Individual currents on spacecraft		- 5
r: 🗌			1.05E0	Minu inetr	ument in 3D				×	-
ument	ts	\$ <u>₿</u>	1E0 -	VIEW INSU	unient in 50					
Part	ticleDetector 0		9.5E-1		Visibility					
Nurr	anticleDetector_0	₩ •	9E-1	EareGroup	Actor-94					
Sim	ulation control		8.5E-1	(C) functions	1.1					
Surt	face potential		0.02-1	V FaceGroup	Actor-90					
In	current on spacecran		OE-1	✓ FaceGroup	Actor-96					
	Configure Instrument: ParticleDetect	tor_0, id: 0		✓ Instrument	View					
	Instrument Name: ParticleDetector_0	<u></u>								
	Mandatory parameters Optional parameters									
	Name A Type	Value	Unit	c				-		
	Channel_1_photoElec_instrument float	0.0	[-]	*						
	Channel_1_photoElec_instrument float	1.0	[-]	2						
	Channel_1_photoElec_instrument float	0.0	ы	2				· -		
	Channel_1_photoElec_instrument int	0	[-]	1						
	Channel_1_photoElec_instrumentEi int	100	ы	1						
	Channel_1_photoElec_instrumentE float	25.0	[eV]	1						
	Channel_1_photoElec_instrumentE float	0.0	[eV]	1						
	Channel_1_photoElec_InstrumentPop String	photoElec	H	1						
	Channel_1_photoElec_instrumentTr int	0	ы	1						
	Channel_2_secondElec True from el float	3.1416927	H	1						
	Channel_2_secondElec True from el float	3.1415927	H	1						
7	Channel_2_secondElec True from el float	1.0	[eV]	4		~	4			1.1
4	Channel_2_secondElec True from el int	0	H	1		· · · · · · ·				-
lim	Channel_2_secondElec True from el int	10000	н	1						- 5
	Channel_2_secondElec True from el int	100000	[-]	1						scroll 🥝 Clear console
	Channel_2_secondElec True from el float	1.0	[-]	×					Close	
	Channel_2_secondElec True from el float	0.0	[-]	¥						
dur						OK	Cancel			
-			0 2021/06/08-23:23	37 DONE						
			2021/06/08-23:23	37 No STG attributed to	VolMesh					
Help	Previous	2021/05/08-23:23	37 Computing devices	axis (if any)	n de de doi 1.7.70171	00057030007E.0.7.55477		4022 0.052206706	24662061	
			1021/05/08-23:23	37 0.99788433405111	58)	2,00,09,027 [-2.28121)	69607030997E+8, 7.55477	083/34/1912*0, 0.330380/0/08105/3, *0.0386252589662	14023, 0.052296705	24003001,
			2021/06/09.23/23	27 DOME						

- Electric field sensors defined by setting the "InteractorType" to "WaveSensor"
 - Define Min and Max frequencies
 - Wire instruments
 - Electric field vs time
- Create a multichannel PD in the live monitoring
- Possibility to visualize the fields of view
- All the results for all individual channel + concatenated results for all the channels

- Electric field sensors defined by setting the "InteractorType" to "WaveSensor"
 - Define Min and Max frequencies
 - Wire instruments
 - Electric field vs time
- Create a multichannel PD in the live monitoring
- Possibility to visualize the fields of view
- All the results for all individual channel + concatenated results for all the channels
- Update of the OcTree algorithm and the OcTree splitting heuristic
- Possibility for advance user to add by default multichannel instrument in the SPIS catalog

Cost function written as: $COST \sim f^{al} \ge (v.n)^{a2} \ge \langle f \rangle^{a3} dv_x dv_y dv_z$

$\text{Or}: \ COST \sim f^{al} \ge v^{a2} \ge \langle f \rangle^{a3} \ dv_x \ dv_y \ dv_z$

With:

- distribution value $f(v_x, v_y, v_z)$
- moment value v.*n* or v
- dispersion value $\langle f(v_x, v_y, v_z) \rangle$

And power factor:

- distribution value power factor a1
- moment value power factor a2
- dispersion value power factor a3

(Configure Instrument: ParticleDetector_0, id: 0									
	Instrument Name: ParticleDetector_0	ment Name: ParticleDetector_0 andatory parameters Optional parameters								
	Name	Туре	Value	Unit	Description					
	instrument_OcTreeHeuristic_normal_X	float	1.0	[-]	User define surface normal for the OcTree heuristic (default: 1.0					
	instrument_OcTreeHeuristic_normal_Y	float	0.0	[+]	User define surface normal for the OcTree heuristic (default: 0.0					
	instrument_OcTreeHeuristic_normal_Z	float	0.0	[-]	User define surface normal for the OcTree heuristic (default: 0.0					
	instrument_OcTreeHeuristic_powerFactorDispersion	int	1	[+]	Power law on the dispersion value for the OcTree heuristic (default: 1.0					
	instrument_OcTreeHeuristic_powerFactorValue	int	1	H	Power law dependance of the Octree value (default 1.0					
	instrument_OcTreeHeuristic_powerMomentValue	int	1	H	Power law dependance of the Octree moment value - 1 equal the simple integral (def					
-	instrument_OcTreeHeuristic_useNormal	int	0	[·]	Use surface normal for the OcTree heuristic (default: 0 = No, 1 = Detector basis, 2 =					
	instrument_UseLogScale_Energy	int	1	[+]	Use log scale for energy scales in outputs (default: 0 = Linear, 1 = Log					
	instrument_UseLogScale_Value	int	1	[-]	Use log scale for value scales (f and J) in outputs (default: 0 = Linear, 1 = Log					
	instrumentSupportId	int	-1	[-]	support index of a particle detector on the spacecraft					

Langmuir probe

- Single and multi-channel particle detector as a device
 - Single channel Langmuir probe by defaults
 - Easy to add channel
 - Improvement of IV Sweep

Langmuir probe

- Single and multi-channel particle detector as a device
 - Single channel Langmuir probe by defaults
 - Easy to add channel
 - Improvement of IV Sweep
- Create a multichannel PD in the live monitoring
- Possibility to visualize the fields of view

ilter : strume Siter : Siter : Siter : Siter : Net Site Net Site	ument lat viewer ns mutation control hindus currents on spacecraft face poiential current on spacecraft granuffold of secondarization ao Configure Instrument: Lane	gmuirProbe	- d' = R 1 0, id: 0	Simulation com 1.05E0 1E0 9.5E-1 9E-1 8.5E-1 8E-1	Vi Vi V	ew instrument in 3D Veikility FaceStroughter-94 FaceStroughter-95 FaceStroughter-95 InstrumentView			×	- 6 0
-6	Mandatory parameters Optima Name Channel, 2, jons J, instrumer/Pop Instrumer, AcceptanceApig, Jaho Instrumer, AcceptanceApig, Jaho Instrumer, AcceptanceApig, Jaho Instrumer, Exception Instrumer, FinalBias Instrumer, LocalBias, Joh Instrumer, LocalBias, Joh Instrumer, LocalBias, Joh Instrumer, JoceBias, Joh	parameters Type String Grand Float Floa	Value lons1 pop1 1.570794 5.06-6 0 1.0 100 -100 3.1415927 0.14039350 0 1000 1000 1	Unit (-) (-) (-) (-) (-) (-) (-) (-)			tr'	(•		-1 9E-1 9.5E-1 1E0 1.1E
Fotal du	instrument, JubPanMax instrument, JubOffses instrument, OrignOutBasis, X instrument, OrignOutBasis, Y	Int Int Roat Roat	100000 21 -2.2520397E-0 7.509407E-0 7.509407E-0	[-] [/] [/m] [/m] 2021/06/08- 2021/06/08- 2021/06/08- 2021/06/08- 2021/06/08- 2021/06/08- 2021/06/08-	23:43:39 23:43:39 23:43:39 23:43:39 23:43:39 23:44:30 23:44:31	V covrame of origin point defining the cutp No STG abblieds to Volkesh Company denices and (of an) a Strategies and (of an) a Strategies (of an) Contrast (or a strategies) Contrast (or a strategies) Contrast (or a strategies) Contrast (or a strategies)	vit basis () () Cancel () Cance	7.554776937347761 5. 4, 0.9305987876810573.	Close	

Langmuir probe

- Single and multi-channel particle detector as a device
 - Single channel Langmuir probe by defaults
 - Easy to add channel
 - Improvement of IV Sweep
- Create a multichannel PD in the live monitoring
- Possibility to visualize the fields of view
- All the results for all individual channel + concatenated results for all the channels
- Possibility for advance user to add by default multichannel instrument in the SPIS catalog

ONERA

THE FRENCH AEROSPACE LAB

RÉPUBLIQUE

FRANÇAIŠE Liberté Égalité Frateraité

Conclusions

- Numbers of new developments and improvements coming from these projects:
 - Contributions proposed to be released in the 6.1.0 version (by July 2021 hopefully)
 - Add of unitary tests for new functionalities and for some older + 9 new verifications tests added
 - Non-Regression-Cases coming from previous project successfully passed
 - Validation campaign for the new developed functionalities performed in the two projects related
- Effort to merge into one User Manual
 - Advantages → all the information in one document / no more distributed in different documentation related to different projects
 - Drawback → huge document ! / for some cases the information are dispersed over the whole document / we try to reduce the length by suppressing deprecated functionalities (loss of information)
- Onera contributions to clean the code, memory usage and multi-threading management
- Most of the functionalities interoperate in SPIS but cross tests done on the most frequent or priority applications:
 - Too large field of application (GEO and LEO charging, EP, ESD, Dusts, Internal charging, scientific instruments, ...) to have a complete matrix of tests
 - Need for contributions from the SPINE members and the SPIS user community to verify (feedback even with criticism are welcomed)
 - Hope for a new dynamic with the new website or other initiative to improve the contribution from community