

Computational Plasma Engineering of Gridded Ion Optics

28th Spacecraft Plasma Interaction Network in Europe meeting 2021

June 8th | 9th | 10th 2021

U. Siems, S. Rouwette, L. Basov, S. Chibani, R. Bouziane, B. Mockel, F. Zhu, R. Schmit, D. Petkow,

F. Taccogna,

D. Feili, and G. Deprez

1

Agenda

Introduction VSTRAP

Modules & Methods

Preliminary Verification & Validation Status

Outlook

VSTRAP

First EP Applications

Hall Effect Truster

- 2d (r-z) fully kinetically PIC
- Simulation Domain: ionization channel + near plume
- Neutral gas interaction: staggered
- Diagnostics: Thrust, ISP, anode current, surface charging, surface erosion, plasma density and plasma potential, ...

Gridded Ion Thruster (ion optics)

- 3D plasma solver (FMM+BEM)
- Full kinetic and hybrid available
- Speed-up: Boltzmann-relation electrons
- Simulation Domain: Extraction region + acceleration of ionized plasma + near plume
- Neutral gas interaction: staged
- Diagnostics: Thrust, ISP, grid/beam currents, collimation angle, grid erosion, plasma density and plasma potential, ...

Gridded Ion Optics Modules

Gridded Ion Thruster (only ion optics)

- Ionization chamber is NOT simulated
- Neutralizer only as quasi-neutral outflow

Required Modules

- 3D plasma solver: FMM+BEM (+hybrid)
- Pusher: explicit Boris schema
- Inflow
- Plasma-wall interaction
- MCC neutral gas interaction (not yet included)

Image: Wikipedia – Gridded Ion Thruster CC BY-SA3.0

3D Plama Solver: Fast Multipole Method (FMM)

5PARC

3D Plama Solver: Boundary Element Method (BEM)

Laplace boundary problem:

Δu	=	0 in \varOmega	
u	=	g_1 on Γ_1	
$\partial_n u$	=	g_2 on Γ_2	¢,

Representation formula:

Collocation scheme:

$$c(y)u(y) = \int_{\Gamma} G(x, y)q(x) - u(x)F(x, y) \, dx$$

$$u_i c(x_i) + \sum_{j \in J} u_j \underbrace{\int_{T_j} F(x, x_i) \, dx}_{F_{ij}} = \sum_{j \in J} q_j \underbrace{\int_{T_j} G(x, x_i) \, dx}_{G_{ij}}$$

Solution in the domain:

$$u(y) = \sum_{j \in J} q_j \int_{T_j} G(x, y) \, dx - \sum_{j \in J} u_j \int_{T_j} F(x, y) \, dx$$

$$E(y) = \sum_{j \in J} u_j \int_{T_j} \nabla_y F(x, y) \, dx - \sum_{j \in J} q_j \int_{T_j} \nabla_y G(x, y) \, dx$$

3D Plama Solver: Couple BEM and FMM

Poisson boundary problem:

$\Delta \phi$	=	$-rac{ ho}{arepsilon_0}$ in $arOmega$
ϕ	=	g_1 on Γ_1
$\partial_n \phi$	=	g_2 on Γ_2

Solution: homogeneous + inhomogeneous

$$\phi = u + v$$

Split Boundary Problem

Δv	=	$-rac{ ho}{arepsilon_0}$	in \varOmega
Δu	=	0	in \varOmega
u	=	$g_1 - v$	in Γ_1
$\partial_{\mathbf{n}} u$	=	$g_2 - \partial_{\mathbf{n}} v$	in Γ_2

- Inhomogeneous part v is solved with FMM
- Homogeneous part u is solved with BEM using the adjusted boundary condition

FMM+BEM vs PIC

Advantages of FMM+BEM	Disadvantages
Grid-less approach	Higher computational demand
Automated adaptivity by Octree	Less common in literature
Better energy conservation	
Consideration of the near field interaction	

Hybrid: Boltzmann solver

The electron density given by the Boltzmann relation

$$\mathrm{n_{br}^{el}}\left(\mathrm{x}
ight)\,=\,\mathrm{n_{ref}^{el}}\exp\!\left(\mathrm{e}rac{\phi(\mathrm{x}){-}\phi_{\mathrm{ref}}}{\mathrm{k_{B}T_{e}}}
ight)$$

The electrons are sampled on the ion positions

Electron weight:

 $w_{el}(x_i) = n_{el}(x_i) \frac{w_{ion,i}}{\sum_j w_{ion,j} S(x_i - x_j)}$

with shape function S(x)

FMM uses screened weights

$$w^s = w^{ion} - w^{el}$$

Gridded ion Optics: Single Aperture

Single aperture ion optics

- 3D hybrid kinetic ions + BR
- Code-to-code comparison
- Single beamlet as infinite pattern
- Hexagonal cross section

Gridded Ion Optics Setup: Geometry

Code to code comparison: Binder et al. [RD1, RD2] (RIT- μ X)

[RD1] T. Binder, M. Pfeiffer, S. Fasoulas, and H. Leiter. High-fidelity Particle-In-Cell simulations of ion thruster optics.
 Proceedings of the International Electric Propulsion Conference, 35, 2017.
 [RD2] T. Binder Development and application of PICLas for combined optic-/plume-simulation of ion-propulsion systems, Thesis, IRS Stu 2019.

Gridded Ion Optics Setup: Operation Point

Boundary Conditions:

	Electrostatic BC	Particle Boundary Condition
Inflow	Dirichlet 1465 [V]	Open with ion inflow: ₁₃₁ Xe ⁺ with density n = 1.08e17 [m ⁻³] Global particle weight w = 500
1 st Grid	Dirichlet 1450 [V]	open
2 nd Grid	Dirichlet -300 [V]	open
Symmetry	Neumann 0 [V/m]	reflective
Outflow	Dirichlet 0 [V]	open

Two electron populations

	Boltzmann relation
Inflow	n _{ref,in} = 1.08e17 [m ⁻³] T _{ref,in} = 3.5 [eV] φ _{ref} = 1465 [V]
Outflow	$n_{ref,in} = 4.4e15 [m^{-3}]$ $T_{ref,in} = 2.0 [eV]$ $\phi_{ref} = 0 [V]$

Additional Parameters

Parameters	Values
Time step	0.5e-8 [s]
Iterations	7000
Sampled Iterations	3000
Shape function	constant
Smearing radius rs	1.25e-5 [m]

Results 2d diagnostics

Plasma state x-z projection with color-coded

Diagnostic x-z plane: Plasma potential

Diagnostic x-z plane: Ion density

Center Line Diagnostics: Code-to-Code verification

Code-to-code comparison to reference [RD1]

Center line: plasma potential

Center line: plasma densities

[RD1] T. Binder, M. Pfeiffer, S. Fasoulas, and H. Leiter. High-fidelity Particle-In-Cell simulations of ion thruster optics. Proceedings of the International Electric Propulsion Conference, 35, 2017.

Movie: Transient Phase

Single aperture, 2 grid system

Regression tests

- Unit tests
- Integration test
 - Inflow test,
- Regression tests
 - Two stream instability
 - Sheath test case
- Verification tests
 - Single aperture gridded ion optics

Outlook

- Staged interaction with neutral gas: charge exchange and elastic scattering
- Validation simulation: 60° wedge of a full thruster comparison to experimental results
- Additional Diagnostics:
 - Surface/beam currents
 - Erosion due to ion impact
 - Bridging to SPIS or OpenPlume (see presentation S. Rouwette)
- Performance improvements with GPUs (see presentation R. Bouziane)

SPARC Industries We deliver. The future.

www.sparc-industries.com

info@sparc-industries.com

