

## Flash-over propagation model on spacecraft solar panels

Loanne Monnin

Sébastien Hess, Jean-François Roussel, Pierre Sarrailh, Denis Payan

28<sup>th</sup> SPINE workshop – 8<sup>th</sup> June 2021

1

#### Context



- Because of interactions with space environment Electrostatic Discharges (ESD) appear on spacecrafts solar panels (SP)
- It leads to a plasma bubble that expands over the SP
- The plasma carries two currents : the blow-off (**BO**) that empty the conductor capacitance and the flash-over (**FO**) that is recollected over the SP
- The plasma bubble is a conductive environment that may lead to secondary arcs



#### Context



### Our objective is to study the evolution of the FO over the SP from the plasma creation at the cathode spot to the extinction



### **Presentation of EMAGS3 campaign : experimental setup**





### **Presentation of EMAGS3 campaign : numerical model**







- Expansion = Bohm velocity
- Many parameters manually imposed
- No information about the FO end







ONERA RÉPUBLIQUE FRANCAISE THE FRENCH AEROSPACE LAB

Liberté Égalité



RÉPUBLIQUE REANÇAISE Menti Serie de la constante la const

#### **Current conservation by the cathode**





#### **Energetic balance at the surface**

THE FRENCH AEROSPACE LAB



#### **Energetic balance in the pre-sheath**

| Neutral emission flux                                                                                                      | Mass conservation                                                         |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Surface near cathodic spot also emit neutrals over a distance <i>l</i>                                                     |                                                                           |
| <ul> <li>We integrate the distribution function<br/>over a disk of radius <i>l</i> considering a<br/>view angle</li> </ul> | <ul><li>All neutrals are ionized</li><li>Mass must be conserved</li></ul> |
| $\Phi'_n = \Phi_n \left( 1 + \frac{1}{2\pi} \ln \left( \frac{l^2 + a^2}{2a^2} \right) \right)$                             | $\Phi_i = \Phi'_n$                                                        |
|                                                                                                                            |                                                                           |



#### **Energetic balance in the pre-sheath**



Z is calculated with the Saha equation (2-3 for silver)



#### Poisson's law in the sheath



M S Benilov. Space-charge sheath with ions accelerated into the plasma. Journal of Physics D: Applied Physics, IOP Publishing, 2010, 43 (17), pp.175203.



#### **Current conservation in the plasma bubble**



Current emitted by the spot = current collected by the SP

Only unknown = plasma potential

Spot characteristic time smaller than expansion time step = Instantaneous current conservation



#### **Plasma potential**





#### **Plasma potential**





#### **Surface temperature**





#### **Electrons temperature**





#### **Plasma density**





#### **FOEBUS results**

### Triggering on a silicon cell

### Triggering on a silver interconnector



#### Courbes : Monnin et all



- We have a Flash-over propagation model with creation and extinction of plasma
- Coupled model between cathode spot emission and current collection over solar panel
- Limiting conditions by the spot = limiting condition for the expansion
- No need for experimental data



- Evolution over large solar panels
  - Current limited by the solar panel size
  - Thermal effect on large scales
  - Density evolution in space
- Solar panel electric circuit
  - Secondary arcing
  - Link between the arc and the FO duration



# Thank you!

