

LEO Charging Environment Characterisation using AMBRE data

F. Enengl(1, 2), F. Cipriani (1), M. Holmberg(1)
Jean-André Sauvaud(4), D. Payan(3)
Jean-Charles Matéo-Vélez(5), A. Siccard(5)
Benoît Lavraud (4)

(1) ESA /ESTEC (TEC-EPS), (2) University of Oslo(3) CNES, (4) IRAP (5) ONERA

07/06/2021

ESA UNCLASSIFIED – For ESA Official Use Only

→ THE EUROPEAN SPACE AGENCY

Motivation – LEO Environment and Charging

Auroral arcs (likely) In LEO, thermal currents DMSP F13 5/5/95 (electron) mostly dominate, Log Ion Density (cm⁻³) wake effects , Vs/c ~-0.5V typically Strong charging observed Electron Energy (keV) 10.0 occasionally (below -2000V) g Electron Fli (#/cm² sr eV) Defense Meteorological Satellite Program lon Energy (keV) Log Ion Flux (#/cm² sr eV) w Polar orbit $\sim 99^{\circ}$, 101 min Charging 10.0 840 km UT (hh:mm) 21:21 21:24 21:27 21:30 21:33 21:36 MLAT (deg) -60.80 -70.90 -79.40 -81.30 -75.00 -66.70 MLT (hrs) 5.10 2.80 22.61 20.14 19.21 4.46 Electrons spectrometer, Background Ions (LP, RPA, DM) \sim -400V frame charging Darkness, low background density, and 12 years of data, 7 satellites **High electrons average energy**

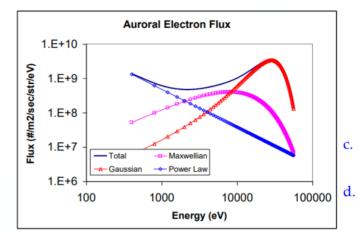
→ THE EUROPEAN SPACE AGENCY

Motivation - Heritage and ECSS

8.2.3 Auroral charging environment

- a. For auroral charging assessment, the following worst-case electron distribution function shall be used.
 - 1. For E ≤17,44 keV:

 $f(v) = 3.9 \times 10^{-18} \text{ s}^3\text{m}^{-6}$


2. For E > 17,44:

 $f(v) = \frac{[N_0(m_e)^{3/2} \exp\{-(E - E_0)/kT_0\}]}{(2\pi kT_0)^{3/2}}$

where

- f(v) is the distribution function in sec³ m⁻⁶
- No is the density in m-3
- *m*_e is the electron mass in kg
- kT_0 is the thermal energy in J
- Eo is in J
- *E* is energy in J

DMSP F6 and F7 26th November 1983

✓ Single point model

✓ Inclination, altitude

Events duration (s/c

density)?

dependence)?

dependence (background

and parameters of the worst case environment are:

- No = 1,13E6 m⁻³
- $kT_0 = 3,96 \text{ keV}$
- $E_0 = 17,44 \text{ keV}$
- NOTE This comes from [RD.7] and is based on work described in [RD.8]. Unfortunately, it is printed in [RD.7] with a typographical error.

or worst case auroral charging assessments, a thermal ion density of 25 cm⁻³ and temperature 0,2 eV shall be used.

NOTE This low ion density comes from a severe charging case seen on the DMSP spacecraft by [RD.9]. Measuring ionospheric thermal ion density during a strong charging event is potentially prone to errors because of the way the charged satellite alters ion trajectories, so there is high a degree of uncertainty in this measurement but there is currently no better information..

A Maxwellian fit to the auroral electron distribution specified in 8.2.3a may be used with temperature 11keV and density 1.1e7m-3 [RD.168]

The worst case environments specified in 8.2.3a, 8.2.3b and 8.2.3c shall be applied for 10s.

JASON 3 / AMBER

JASON-3

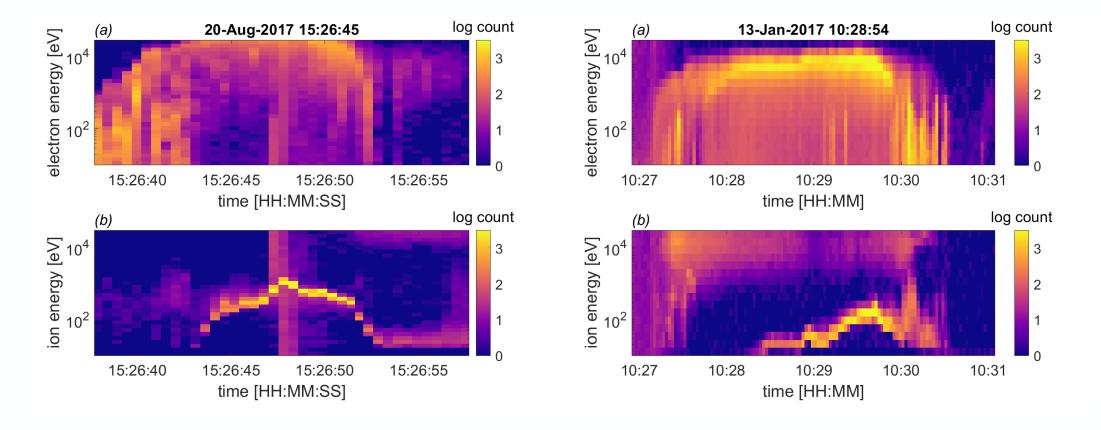
- Capteur 1 : ElectronsCapteur 1 : ElectronsCapteur 2 : IonsImage: Capteur 2 : Ions
 - Table 1. Main properties of the new AMBER prototype.

Parameter	Value
Sphere diameter	86 mm
Azimuthal resolution (anode)	22.5°
Azimuthal resolution (intrinsic)	6°
Elevation resolution	7.5°
Instantaneous FOV	$7.5^{\circ} \times 360^{\circ}$
Energy resolution	14°
k-factor	9.1
Geometric factor (per anode)	$0.75 \times 10^{-3} \text{ cm}^2.\text{sr.eV/eV}$
Volume	$130 \times 130 \times 140 \text{ mm}$
Mass*	~1 kg
Power*	~1.5 W

Source: Lavraud et al. (2014)

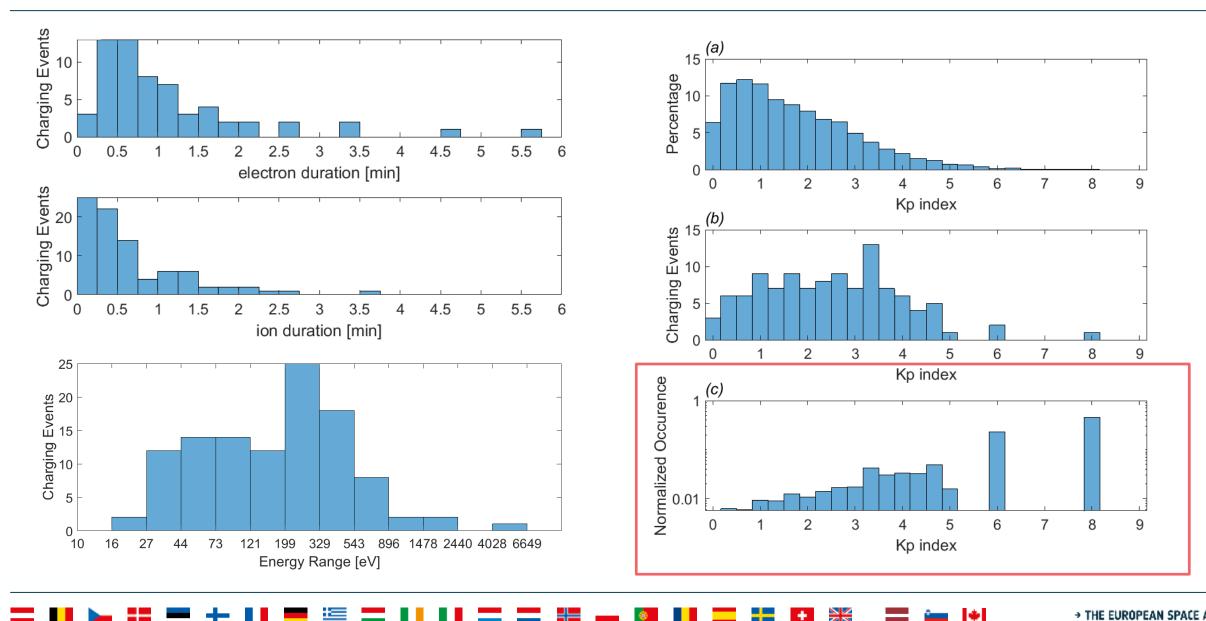
Joint Altimetry Satellite Oceanography Network -3

- joint NOAA/EUMETSAT/CNES ocean topography mission
- satellite launched in January 2016
- circular orbit at 1336 to 1340 km altitude, inclination = 66.038°

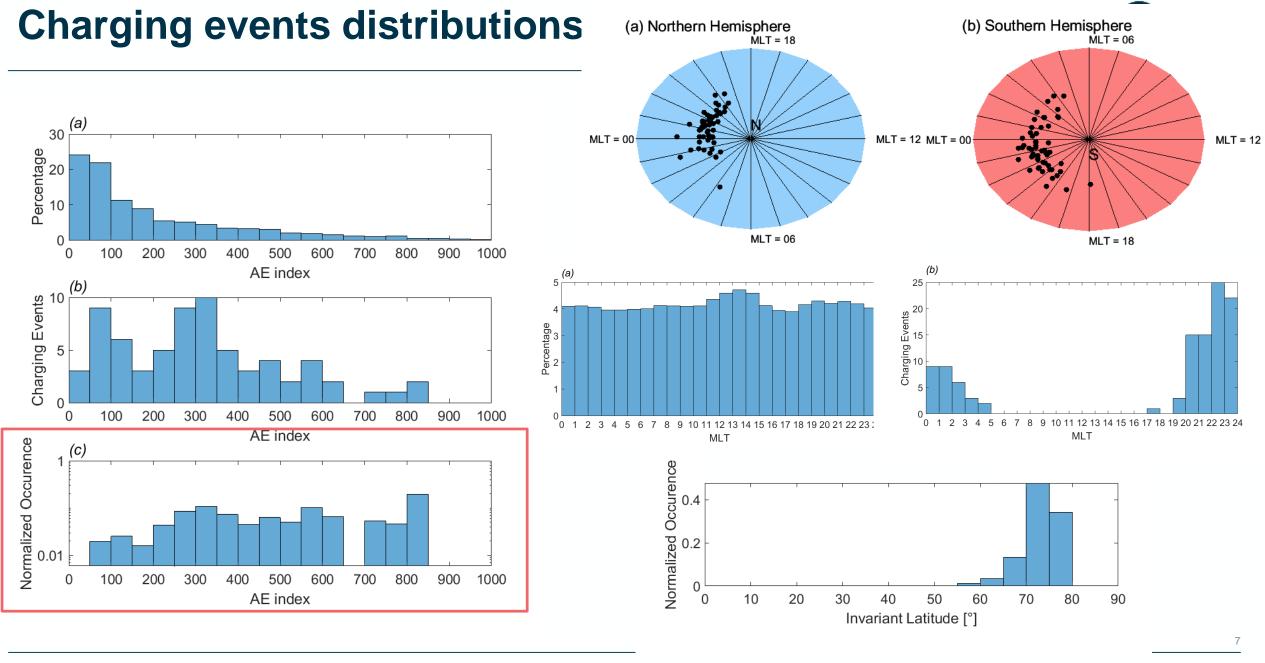

Active Monitor Box of Electrostatic Risks

- double-head thermal electron and ion electrostatic analyzer
- energy range 0 30 keV

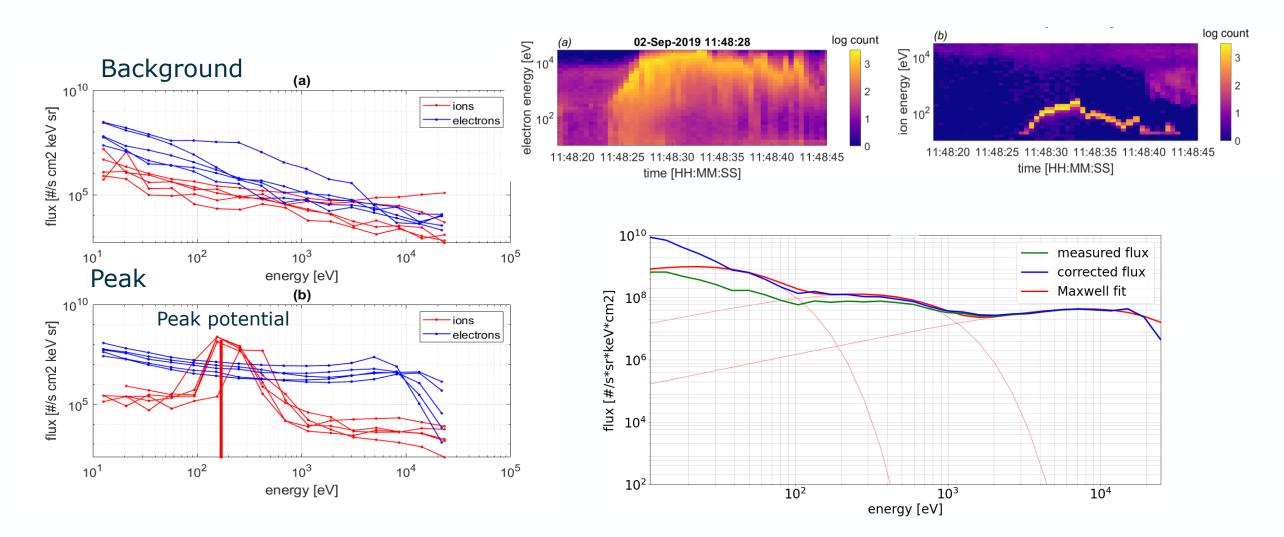
Data analysis – ion spectrograms



- > search for 3 consecutive datapoints with counts over 10^2.9 in any of the ion energies
- > from 2017 March 2020: around 63 events in 2017, 26 events in 2018, 23 events in 2019, 9 events in 2020



Charging events distributions


6

= 👝 🔯 🚺 🚍 🚼 🖬 👫 🚍 🕍 I+I

→ THE EUROPEAN SPACE AGENCY

Typical particle fluxes spectra retrieval and and fitting

8

esa

Conclusions and follow-up

- > 110 charging events identified
- Duration between 30s and 1 minute
- Charging levels between ~x-10V and ...to <-2000V</p>
- > good agreement with previous studies in terms of MLT/LAT distributions, Kp correlation
- In depth analysis as direct follow up of this first statistical survey for systematic evaluation / environment model parameters
- > Retrieval of plasma conditions prior charging with 3D modelling (spis)
- Other datasets (when available) should be investigated to strengthen our environment models and especially WC analysis in LEO – revisit ECSS if need be
- More sensors needed !