Plasmashperic products for space weather service

János Lichtenberger^{1,2}, Balázs Heilig^{3,1}, Anders Jørgensen⁴, Dávid Koronczay^{1,2}, Péter Steinbach⁵, Lilla Juhász¹, Bendegúz Bendicsek⁶

¹Eötvös University, Budapest, Hungary
²Institute of Earth Physics and Space Science, Sopron, Hungary
³Mining and Geological Survey of Hungary, Budapest, Hungary
⁴New Mexico Institute of Mining and Technology, Socorro, New Mexico,
⁵Research Group for Geology, Geophysics and Space Sciences, HAS, Budapest, Hungary
⁶Budapest University of Technology and Economics, Budapest, Hungary

Outline

I. Plasmasphere – plasmapause – plasmatrough specifications

- 1. In-situ measurements
- 2. Ground based measurements
- II. ESA P3-SWE-LII Plasmaspheric Products for Space Weather Services
 - 1. Products characterizing the plasmasphere and plasmapause
 - 2. Use cases for SWE/SPINE community

I. Plasmasphere – plasmapause – plasmatrough specifications

Plasmasphere – plasmapause

Plasmasphere: Cold plasma corotating with the Earth

Plasmapause: sharp density drop

IMAGE view of the erosion of the plasmasphere as a response to a geomagnetic storm (Jerry Goldstein/SwRI)

Dynamically linked to magnetospheric, ionospheric processes

Figure 2. An ideal example of the log_{10} density versus L shell (R_E) for a 0.5 h bin centered at 22 MLT at 13:30 UT on 24 March 2002.

- A. Electron density: upper hybrid resonance frequency measured by (mostly) high frequency electric field:
 - Many satellites since '90s: Akebono, CRRES, Polar, IMAGE, THEMIS, RBSP, Arase...
- B. Plasma mass density: lower hybrid resonance frequency measured either by passive and active method:
 - Few examples only: Cluster WHISPERs

No real-time data available at the moment We need sustainable data!

Equatorial electron density measured by RBSP-A, 14 June 2013

VLF whistler: frequency dependent propagation speed:

$$T_m(f) = \frac{1}{2c} \int_s \frac{f_p f_H}{f^{1/2} (f_H - f)^{3/2}} ds$$

equatorial electron density from f_p

Automatic Whistler Detector and Analyzer Network (AWDANet) a worldwide network of automated whistler receivers

Improvement under the PLASMON (EU FP7 project)

Automatic retrieval of equatorial electron densities and density profiles by *AWDANet*

I.2 Ground based measurements of cold plasma density/electron density

A European quasi-Meridional Magnetometer Array

EMMA

EMMA covers the L-range 1.5-6.0

I.2 Ground based measurements of cold plasma density/electron density

PLASMON heritage near real-time plasmasphere monitoring

FLR (black line) detected in the cross-spectrum of BRZ-SUW at L=2.61

FLRID (at MBFSZ)

- Field Line Resonances (FLRs) detected automatically in NRT
- FLR detection is based on the gradient technique

FLRINV (at Univ. of L'Aquila)

- FLR inversion
- based on Singer et al (1981) solution (MHD wave eq. In arbitrary magnetic field)

 $v_A = B/\sqrt{\mu_0 \rho}$

 \rightarrow plasmaspheric and trough mass densities

I.2 Ground based measurements of cold plasma density/electron density

A proxy for the midnight PP position from Swarm data

Figure 11. (a) Swarm SSFAC index (blue) and VAP PP_N_e (red) locations, (b) variation of the Kp index, and (c) MLT of the Swarm (blue) and VAP (red) observations. Heilig and Lühr, 2018

SSFAC boundary statistics (> 160 000 observations of CHAMP and Swarm)

ESA P3-SWE-LII Plasmaspheric Products for Space Weather Services

PLASMA is a ESA-funded project to develop and validate procucts to characterize plasmasphere and plasmapause.

Development of products characterizing the plasmasphere / plasmapause and related ionospheric phenomena

The products to be developed will be based on the following key concepts:

- the plasmaspheric products need to be based on sustainable inputs.
- the plasmaspheric products will incorporate all available major data sources and methods

- for the development and validation of the products, we will use **historical/archive data as well as available models** within and outside ESA SSA SWE.

We will develop products

- based exclusively on ground based measurements
- based exclusively on in-situ measurements
- plasmasphere models based on historical/archive ground and space-based data
- plasmasphere models based on real-time ground and space-based data

Products characterizing the plasmasphere and plasmapause (nowcast, forecast and archive)

- **1. Plasma density (PD-M) with parameters:**
 - 1.1 Plasma electron density (PED)
 - 1.2 Plasma mass density (PMD)
 - 1.3 Field-aligned electron density (FAED)
 - 1.4 Field aligned Mass density (FAMD)
- 2. 2D electron density map (PEDM)
- 3. 2D plasma mass density map (PMDM)
- 4. Plasmasphere index (PSI)
- 5. Plasmapause location limits (LPP-M) 5.1 ULpp+ and ULpp-5.2 VLpp-
- 6. Midnight Plasmapause Proxy (MPP)
- 7. Empirical Plasmapause Model (PPM)

Mother products (products serve as background models but not provided directly to the users)

- 8. 3D Empirical Plasma Density Model (EPDM)
- 9. 3D Data-assimilative Plasma Density Model (DPDM)

Products characterizing the plasmasphere and plasmapause

2D electron density map (PEDM) (0.1L and 1h MLT resolution)

Products characterizing the plasmasphere and plasmapause

Plasmaspheric index (PSI)

Category index	State/trend	Colour
-1	eroding	red
	plasmasphere	
0	no clear trend	yellow
1	refilling	green
2	saturated	light blue

Plasmapause location limits (LPP), midnight plasmapause proxy (MPP) and plasmapause model (PPM)

A snapshot of the plasmapause based on PPM (along with corresponding MPP and LPP observations). Light blue and pink crosses are lower and upper PP limits, accordingly, while blue cross in a circle indicates the MPP

Products characterizing the plasmasphere and plasmapause

Planned content of the federated webpage for the pre-operation phase (~second half of 2022)

Use cases

A. Direct use of plasmaspheric products

- 1. Radiation Belt and Ring Current models:
 - plasma/electron density point measurements, hourly 2D equatorial density maps
 - plasmapause size and shape (L, MLT), PP location proxies → important for energetic particle dynamics (provides a realistic input for radiation flux modelling)

2. Spacecraft operators:

- plasmapause size and shape, PP location proxies, plasma densities outside of the plasmapause \rightarrow surface charging
- plasmasphere index

3. lonosphere models:

 plasma/electron densities, density maps and density models → Plasmasphere Total Electron Content (PTEC)

Use cases

B. Indirect use of plasmaspheric products

1. Spacecraft operators:

- through A.1. → inner belt proton flux >50MeV → Single Event Upset/Latchup
- plasmapause size and shape (L, MLT), PP location proxies → important for energetic particle dynamics (provides a realistic input for radiation flux modelling)

2. Spacecraft launchers + MEO/HEO satellite operators:

- through A.1. → slow lifting of GEO satellites from LEO e.g., by electric propulsion; orbiting in plasmasphere/radiation belts

3. Spacecraft designers:

- through A.1. → Deep Dielectric Charging/Discharging

4. Telecommunication and navigation (MEO/HEO) satellite operators/users:

- through A.1. \rightarrow ionospheric disturbances

5. Insurance companies:

- through A.1-3. \rightarrow post-event analysis

1. Spacecraft operators (charging risk assessment):

- spatial density profiles along any or a predefined trajectory (orbit)
- temporal density variation at a location e.g., for GEO satellites

2. Ionosphere modellers (for removal of PTEC contribution from TEC to clean ionospheric TEC):

- Plasmaspheric TEC (PTEC, from the lowest altitude available from the models out to the plasmapause)
 - a. various PTECs: vertical, slant, point-to-point
 - b. global vertical PTEC map: