

3D Internal Charging Analysis in FASTRAD®

J.M. Plewa, M.C. Ursule, L. Sarie and A. Varotsou.

TRAD Tests & Radiations, Labège, France

28th SPINE meeting: 8th-10th of June 2021, ESA/ESTEC, The Netherlands

TRAD, Tests & Radiations

- Introduction to FASTRAD
 - A radiation analysis tool
- First level analysis: current density
 - Identify the critical parts
- Second level analysis: electric field
 - Example on a 25-pins connector
- 3D comparison
 - Coaxial cable
- Conclusion

FASTRAD: a radiation analysis tool

Dose calculation (TID & TNID) based on two methods:

Sector analysis Ray-Tracing

Particle transport based on GEANT4: Monte Carlo Forward

First level analysis: current density

- Inputs
 - Worst case electron flux (short term average).
 - Select a sensitive volume in the 3D model.
- Calculation method

From the surface to the outside: Reverse Monte-Carlo

- Outputs
 - Current density (pA/cm²) of the incident electrons at the surface of the sensitive volume.
 - Charge deposition rate (C/m³/s) inside the sensitive volume.

From the surface to the interior: Forward Monte-Carlo

First level analysis: current density

Geometry model

- Use the same geometry model as for the TID/TNID analysis.
- Example: geometry from the ray tracing analysis.

Ray tracing view

Ray tracing view

First level analysis: current density

- Identify the critical parts: Reverse Monte Carlo method
 - Run a Reverse Monte Carlo transport calculation on every critical part among connectors, PCBs, cables.
 - Calculation of the incident current density
 - Display the current density and compare to the ECSS threshold [ECSS-E-ST-20-06_0070118]

 - $\ ^{\rm o} \quad$ If T < 25°C : J_{max} = 0.02 pA/cm^2

Unit	Part	Current density	Calculate Electric Field ?
1	Connector	J > 0.02 pA/cm ²	YES
1	РСВ	J < 0.02 pA/cm ²	NO
2	Connector	J < 0.02 pA/cm ²	NO
2	PCB	J < 0.02 pA/cm ²	NO
3	Connector	J < 0.02 pA/cm ²	NO
3	PCB	J < 0.02 pA/cm ²	NO
4	Connector	J > 0.02 pA/cm ²	YES
4	PCB	J > 0.02 pA/cm ²	YES

• General approach for the ESD risk assessment:

• Starting from the charge deposition $\dot{\rho}$ and the dose rate \dot{D} , the potential is solved in 3D.

Second level analysis: electric field

- Step 1: charge and energy deposition
 - Both Forward and Reverse Monte Carlo methods can be used.
- Example:
 - Connector: 25 pins
 - Complete geometry model: satelite geometry + unit geometry
 - Particle transport method: Reverse Monte Carlo

Second level analysis: electric field

- Step 2: mesh and boundary conditions
 - Create the volume mesh
 - Display and refine the volume mesh
 - Assign boundary conditions

Second level analysis: electric field

- Step 3: electric field calculation
 - Define the duration of irradiation, e.g. 24h
 - Define the time step
 - Run the electric field calculation
 - Display the potential and electric field evolution

3D Comparison

- 3D comparison by using a coaxial cable.
- The comparison is made with 3DNUMIT [1].
 - Coaxial cable: Al, Cu and Teflon
 - Planar irradiation for 400 h
 - Inner conductor and shielding are grounded

Dielectric properties	Teflon
Relative permittivity	2.15
Bulk conductivity (Ω ⁻¹ .m ⁻¹)	2.60x10 ⁻¹⁹
Radiation induced conductivity (Ω^{-1} .m ⁻¹ .rad ^{-Δ} .s ^{Δ})	6.10x10 ⁻¹⁶
Δ	1

[1] "Benchmarking internal dielectric charging simulation platforms" Likar et al. , ASEC 2019

3D Comparison

- Charge & Energy deposition
 - Good agreement with distribution and magnitudes.
 - Subtle differences in magnitudes (different particle transport codes, different meshing)

3D Comparison

- Potential after 400 h irradiation
 - Good agreement of potential for space distribution and value
 - The maximum potential is -15% lower than 3DNUMIT

3DNUMIT φ_{max} = -6 000 V

FASTRAD® E_{max}= 18 MV/m

- Electric field after 400 h irradiation
 - Good agreement of electric field for space distribution.
 - The maximum electric field at the interfaces is lower than 3DNUMIT.
 - Maybe due to different interface behavior for the electric field solver in the finite element method.

Internal charging analysis with geometry coming from the TID analysis.

- Two levels of internal charging analysis in FASTRAD, allowing save time:
 - First level: electron current density
 - particle transport method: Reverse Monte Carlo can be used
 - comparison to ECSS thresholds
 - identification of critical parts
 - Second level analysis: electric field calculation
 - Only on critical parts
 - Display potential and electric field evolution
- Validation
 - Particle transport code, based on Geant4 physics, validated and published [RADECS 2016]
 - 1D cases have already been used for validation (not shown here)
 - 3D validation with one case
 - Additional 3D validations with other tools and experimental data are in progress
- Beta version available June 2021
 - Official FASTRAD release September 2021

Thank you for your attention