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Modular programming

Objective: ease of addition (new solvers, new features, user requirements, etc.).

Agile : efficient development cycles within a team.

Maintainability : efficient refactoring enhanced

by CI & modular framework

Reusability : less redundant code.

Example of the modular implementation structure
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High quality code.

• Tools: GIT, CI, different compilers, code analyses (static and dynamic),…

• Rules: Branching system, code reviews, change logs, code styling,…

• Tests: Unit tests & Regression tests,…

• Metrics: Unit test code coverage, s/w metrication of code reliability,…
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CI - Continuous Integration

• GITlab: Code versioning, bug tracking, ...

• Branching system (master branch, development branch, feature branches)

• 2 important rules:
1. The master branch is the production branch and must always be deployable

2. Feature branches are rebased & merged during development only once test suites in CI pass successfully.

• Code review for every change in a feature branch (assigned responsibilities)

• Change logs (condensed change info going way beyond (technical) code commit info)

• Event-triggered test cases: Unit tests + regression tests executed on each branch at each push operation

• Time-triggered test cases: compilation, unit tests, integration tests and regression tests
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Unit test code coverage

• Automated weekly reports sent by Email

• CPU code: Quantification using Lines of Code & Number of Functions

• GUI code: Quantification using Lines of Code
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Deployment

• Containered with Docker & Singularity

• VSTRAP is stable and independent of user’s system configuration

• Guaranteed user-friendly: after installing Docker or Singularity, just execute VSTRAP

Reliability | Final Touch



VSTRAP comes with two feature-identical physics engines

• CPU-only code: OMP parallelized, i.e., shared memory machines

• CPU/GPU code:

• Parts of CPU-only code are GPU-parallelized for CUDA-compatible GPUs (NVIDIA)

• OMP for the remaining CPU-only code

Reason:

• CPU for long serial processes | Few high frequency cores | High memory size.

• GPU for high parallel processes | Many lower frequency cores | High local memory throughput.
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Optimization strategy

• Profiling to identify bottlenecks

• Increase performance in two ways:

• Optimize algorithms

• OMP parallelization

• Measure progress by set of test cases

How do we select the code parts / algorithms for GPU parallelization?
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Identification of GPU-parallelizable Engine code

• Computational expensive

• Little data transfer required

• NVIDIA GPU: CUDA framework. How does it work?

Performance | CPU/GPU Physics Engine

__global__ void Kernel (uint N, ...) {
size_t tid = threadIdx.x + blockDim.x * blockIdx.x;
size_t stride = gridDim.x * blockDim.x;
for (uint i = tid; i < N; i += stride) {

…. ;
}

}

Kernel <<<…. , …. >>>(N, ….);



Porting Process

• Define device data that are required for GPU kernels

• Study the transfer overhead (minimize data transfer for better performance gain)

• Make device memory allocations

• Setup the device data on the host or on the device

• Define the GPU kernel and configure it with the proper execution configurations:
• number of blocks
• number of threads per blocks

• Study the synchronization between host and device

• After the GPU kernel call and synchronization, copy the result from device to host

• Unit testing and evaluating performance
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Performance gains (today) just by porting to GPU

• CPU : Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz

Tesla V100 :

• Speedup factor of 5 for FMM

• Speedup factor of 3.5 for 2D pusher

• Speedup factor of 2 for 2D PIC
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Optimization strategy

Roofline Analysis : NVIDIA Nsight compute:

- Arithmetic intensity (FLOP/byte)

- Performance (FLOP/s)
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Roofline analysis memory statistics

Memory statistic

-L1/L2 caches

Memory access patterns

-uncoalesced access

Performance | GPU Acceleration



Reliability

• Extend s/w metrication

• Add unit test GPU-code coverage

• …

Performance

Further increase by

• GPU Algorithm optimization

• Data transfer between host and device

• Hardware: NVIDIA A100 GPU 40MB + Utilize tensor cores

• Multi-GPU utilization

• ...
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Product available 06/22.

Beta available now.

If you want to influence further VSTRAP development – contact us.
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