
Enabling portability across diverse hardware with a model-based approach

Mark McCrum (mark@brightascension.com)
Peter Mendam (peter@brightascension.com)

Bright Ascension Ltd, Scotland, UK

Nanosatellite developers benefit from the availability of a wide range of COTS subsystems
from a diverse range of suppliers. Indeed, it is common to find subsystems from multiple
competing vendors within a single satellite. Subsystem suppliers vary greatly in their
architectural philosophies, selection of interface protocols and adoption of standards. This
presents particular challenges for software reuse, because subsystems that are functionally
very similar appear completely different from the point of view of software. This paper
describes a Model-Based approach to tackling the problem of reuse in such an environment.
The approach has been developed commercially by Bright Ascension for a number of years
and proven through application to a wide range of missions.

Context
Other than their small size, nanosatellites are characterised by low cost and rapid
development times. This, together with standardised form-factors for cubesats, has driven
extensive use of COTS subsystems and the emergence of a bewildering range of vendors,
each with different and often incompatible ideas of how a satellite subsystem should be built.

To take the example of an Electrical Power System, the AAC Clyde Space ‘Starbuck’ EPS
and GOMSpace P60 are broadly comparable from a functional perspective. From an
interface perspective however, they could hardly be more different. The Clyde subsystem
makes use of an I2C interface with a custom communications protocol and is designed to be
driven directly by an OBC. The GOMSpace subsystem uses the CSP protocol over one of
two possible physical interfaces. It is designed to function as part of a network which spans
the space-ground interface so that it can be commanded directly from the ground without
any involvement from an OBC.

Such diversity creates a challenge for software development given the need to produce
reliable software in a rapid and cost-effective manner. We can meet this need through
software reuse, but to do so we must identify suitable units of reuse and provide a way to
integrate these units in different combinations to accommodate the very different scenarios
encountered.

GenerationOne
Since 2012, Bright Ascension has been developing a technology called GenerationOne. This
combines

● Model-based software engineering, permitting machine comprehension of software
architecture and the use of tools to assist with software development and product /
quality assurance

mailto:mark@brightascension.com
mailto:peter@brightascension.com

● Component-based software engineering, enabling reuse of software across a wide
range of scenarios and applications, combining software with its documentation and
tests within libraries

● Service-oriented architecture, providing consistent and well-defined semantics for
component interactions at all levels, enabling low-level aspects of the system to be
expressed as components whilst improving operability.

GenerationOne technology comprises a meta-model definition; a language-independent set
of service and protocol definitions; and cross platform tools, and framework implementations
for target platforms. The GenerationOne approach permits almost the entirety of a software
system to be expressed as components, from hardware drivers and communication
protocols to applications. The underlying framework is lightweight and most components are
portable across platforms and operating systems.

The flexibility of GenerationOne largely derives from the loose coupling of components which
is achieved by the fact that components may only interact by consuming or providing
services which are fully defined using the meta-model. This ensures that components can be
used interchangeably provided only that their service requirements can be met. The fact that
the scope of the meta-model includes the definition of services means that services can
evolve and new services be developed to meet emerging needs without the need to change
existing tooling or infrastructure. This is important because the appropriate definition for a
service may only become clear over time as more real-world examples are encountered and
mission experience is accumulated.

Services in GenerationOne
Within the meta-model, a service defines one or more operations. Operations follow one of a
number of interaction patterns (for example, request-response) and may have both input and
output arguments. A type system allows custom argument types to be defined. Components
that consume a service may invoke the service operations either synchronously or
asynchronously. All service operations specify a particular end-point, to which they are
directed. End-points are identified using the concepts of service channels and selection IDs.

Every service access point provided by a component defines one or more channels on which
that service is provided. These are fixed at deployment time. A service channel may
represent a node on an onboard bus (for example an address on an I2C bus, or a
chip-select on an SPI bus). It may also represent a route through a network.

Selection IDs operate within a given service channel and are defined at run-time. Typically
these represent dynamically-managed resources such as file handles.

Components that consume a service do so via the concept of a binding to one or more
providers of that service. These bindings are defined at deployment time. They may be
‘open’ which allow the consumer to access any provider or ‘closed’ in which case the
provider(s) are fixed at deployment time.

Standard Services
The standard GenerationOne product includes a core set of basic services of proven value.
Of these, three are commonly used to represent hardware interfaces and communications
protocols:

● The Packet Service (PS) provides the ability to send packets of data to and receive
from an endpoint. This maps well on to interfaces between layers of a
communications protocol stack and asynchronous communication technologies such
as CAN or UART.

● The Memory Access Service (MAS) provides the ability to write to and read from
particular addresses of an endpoint. This is representative of memory-like interfaces
with a clear initiator-target relationship such as I2C or SPI. Or, at a higher level of
abstraction, a flash memory.

● The Abstract Messaging Service (AMS) provides the facility to send abstract
messages representing the operations of other services. By providing a mapping for
AMS to a communications channel between two nodes in a network, providers and
consumers on those nodes (or other nodes reachable via those nodes) can interact.
AMS is used as the basis for building distributed systems with nodes communicating
via the onboard data-handling network and over the spacelink.

Results
At the time of writing, GenerationOne has been used successfully on 18 spacecraft, with
many more under development. These have included subsystems from most of the major
CubeSat subsystem manufacturers and have included both highly distributed and
single-OBC architectures, bus protocols such as CSP and CAN-TS and a wide range of
CCSDS communications protocols. All of this has been achieved with a high degree of code
reuse and corresponding savings in development cost and time.

Conclusion
The use of reusable software components within a model-based system has been
fundamental to the successful use of GenerationOne technology. It has enabled the rapid
production of flight software for satellites which have radically different architectures and
which use a diverse range of COTS subsystems and communications protocols. A loosely
coupled architecture is achieved by restricting the interaction between components to the
provision and consumption of well-defined services. This provides great flexibility in the way
that components can be deployed to match the needs of a given scenario. Of course, this
flexibility depends on having the right services in the first place. The GenerationOne
meta-model allows new services to be defined simply, expressed through a range of
interaction patterns with both synchronous and asynchronous operation. It further enables a
wide range of service topologies to be captured through the concepts of service channels,
service selections and bindings.

