
Thales Alenia Space Internal

“EXTENDING THE SCALE OF OUR MODELLING ENVIRONMENTS WITH CFS

AND SEDS”
Zahi Manzelji (1), Franco Bergomi (1), Régis de Ferluc (1)

 (1) Thales Alenia Space, France, E-mail: zahi.manzelji@thalesaleniaspace.com,
franco.bergomi@thalesaleniaspace.com, regis.deferluc@thalesaleniaspace.com

Abstract: This paper presents the work that was

led by Thales Alenia Space to take cFS (“core
Flight Software”) and SEDS (“SOIS compliant
Electronic Data Sheets”) standards into account
in its model-based On-Board Software (OBSW)

design environment, CCM4Space, in the frame
of Lunar Gateway programs.

Keywords : PUS, cFS, SEDS.

1. INTRODUCTION

Up to now, European Space Missions has been
largely based on the ECSS PUS standard

(“Packet Utilization Standard”). In the frame of
Lunar Gateway programs, Thales Alenia Space
France is involved in the development and
manufacturing of HLCS (“Halo Lunar

Communication System”), I-HAB
(“International Habitation Module”), and
ERM (“Esprit Refuelment Module”), in a
worldwide collaboration initiated by the NASA

(“National Aeronautics and Space and
Administration”). This context has brought up
the need of an harmonization of the on-board
software architecture. NASA’s cFS has been

chosen as common framework, and is imposed
to every manufacturer and contractor working
on the Lunar Gateway development. While PUS
and cFS share many common aspects, they

impose two radically different paradigms in
terms of software architecture. In order to be
able to work efficiently – and to meet up the
strong planning requirements on the three

programs, Thales Alenia Space France updated
its model-based OBSW design environment to
make it compliant to both PUS and cFS
standards. A first part of this document presents

the evolutions that were made to the design
environment to handle cFS.

Working worldwide on Gateway modules that

will have to interact and communicate between
each other also imposes precise interface
definition and specification. SEDS interface

definition standard has been chosen on all

Gateway programs to document software
components (i.e. cFS applications) interfaces. A
second part of this document explains how
SEDS takes part in the software development

lifecycle, and what tools have been developed to
interact with this new standard.

2. CCM4SPACE

2.1. PRESENTATION

Thales Alenia Space uses CCM4Space for all
On-Board Software design activities;
CCM4Space is a customization of a Thales
Group proprietary tool called Melody CCM

which provides editors to define architectures
for Software Systems based on Component-
Based Software Engineering concepts.

Its core meta-model,CCM (Corba Component
Model) is extended with domain-specific

extensions; For instance Thales Alenia Space
France has developed extensions in order to
cope with the domain-specific concerns such a
PUS, Precise Data and Interfaces design,

Ground-Board communication, etc…

Melody CCM is also augmented with code
generators (Ada , C) and other transformations
(TM/TC IDS (Telemetry/Telecommand
Interface Data Sheet) for instance), altogether

composing the Software Factory (CCM4Space)
used by software engineers to optimise on-
board software development. This tooling is
mostly aligned on the On-board Software

Reference Architecture (OSRA) of ESA.

2.2. PUS STANDARD COMPLIANCE

The ECSS PUS standard defines the
composition of packets transiting on the
ground/board link. Many services are addressed

such as command acceptance, housekeeping,
event reporting, memory management, FDIR
management, …

mailto:zahi.manzelji@thalesaleniaspace.com
mailto:franco.bergomi@thalesaleniaspace.com
mailto:regis.deferluc@thalesaleniaspace.com

Thales Alenia Space Internal

Traditionally, models and model elements in

CCM4Space are used so-as to reflect very
closely the PUS standard..

3. CFS FRAMEWORK

3.1. PRESENTATION

NASA’s on-board software architecture is based
on the cFS (core Flight Software) framework.

This one relies on several operational concepts :

 Kernel services (CFE – Core Flight
Executive)

 Independent and reusable applications

 A software bus routing messages
(CCSDS packets) between applications

Therefore, a set of common cFS applications is
provided to manage the some monitoring and

control functionalities than the PUS standard
services (see 2.2).

The main difference between a cFS architecture
and our legacy on-board software architecture is

the way applications communicate between
each other.

While our design traditionally relies on
synchronous or asynchronous calls of services

specified in interfaces provided or required by
application components, in a cFS architecture
applications are communicating using
publish/subscribe communication patterns, with

all communication going through the software
bus.

Instead of direct connections between

application components, the software bus
intermediate sever makes all applications
independent from one another.

To be noted that cFS also make possible to have
libraries (cFS libs) which can be accessed in a

direct way by cFS apps.

3.2. MODELLING CFS APPLICATIONS

To describe the typical publish/subscr ibe
interactions between cFS applications, and to

keep the possibility to have direct interaction
patterns (when for instance an architecture
contains cFS libs which are accessed in a direct
way, i.e. using interfaces, facets and

receptacles), new concepts have been
introduced in CCM4Space, using CCM standard
“generic interactions“ capabilities.

Practically, this part of the standard allows to
define your own interaction patterns, using

connectors with ports and exchanged data.

In our case, to model the publish/subscr ibe
interactions between cFS apps and the software
bus, we defined a generic
PublishSubscribeConnector, with two ports

(subscription/publication) and one exchanged
data corresponding to the published/subscribed
packet payload structure. This generic connector
is then instantiated for each packet type

exchanged on the software bus.

Figure 1: Example of
cFS architecture

Thales Alenia Space Internal

Each cFS app interacts the same various ways

with the software bus :

 Receiving telecommands (packets
subscription)

 Sending housekeeping (packets
publication)

 Emitting events (packets publication)

 Being configurable via adjustable data

(using cFS tables which involves
specific telecommands)

As data is always exchanged via packets with
the same header but a different payload,

exchanges can be modelled in a standardized
way, and this modelling can even be
automatized. The only modelling effort that
needs to be done concerns the structure of the

here-above listed elements.

This is performed using classical CCM structure
modelling, in a first model that we call packets.

A generator then updates all communication
layer model elements in separate models.

For each packet defined, a connector is
instantiated with the corresponding payload
structure as packetType, in a second model that
we call interface.

Thirdly, for each packet defined, a port with the
correct direction (subscription for
telecommands, publication for other packets) is
added to the component corresponding to the

cFS application. This port references the
previously instantiated connector type. This is
stored in a third model that we call component.

Finally, as in common architectures modelling,

components are instantiated and deployed on a
target. The major difference here is that
instances of connector types are also instantiated
and deployed on a target. Components and

connector instances ports are connected. This
way we guarantee that applications do not see
whom they are communicating with.

4. SEDS

4.1. PRESENTATION

Spacecraft Onboard Interfaces Services (SOIS)

compliant Electronic Data Sheets (SEDS)
describe data interfaces for flight hardware.
SEDS describes these interfaces using machine -
readable Extensible Markup Language (XML)

to support the lifecycle of space vehicles.

On Gateway programs HLCS, I-HAB and ERM,
SEDS standard is used to share cFS applications
interfaces between the stakeholders. For
instance, NASA delivers core cFS applications

to all manufacturers, and delivers SEDS to
describe those applications interfaces. At Thales
Alenia Space France, to model our own cFS
applications and describe their interaction with

cFS ones, we need to have a model for each
NASA application. SEDS are used to
automatically initiate those models.

Figure 2 : Deployment of

component and connector
instances

Thales Alenia Space Internal

SEDS TO CCM IMPORTER

cFS application SEDS files are used to
automatically initiate CCM models. SEDS

standard is quite permissive, and to that extend,
each metaclass has a large number of attributes.

As a first step of the process, SEDS metamodel
has been simplified to keep only what was
considered useful to represent cFS applications.

This simplification consists in a second EEDS

(Efficient EDS) metamodel.

Figure 4: SEDS to CCM general import process

After some minor operations on input SEDS
files to transform them into EMF EEDS models,
the main transformation is performed by a

Transposer (Transposer is a model-to-mode l
technology part of the Polarsys Kitalpha Eclipse
project) bridge between this EEDS models and
CCM models representing cFS applications

(packets, interface, component and
deployment).

5. CONCLUSION

In the context of the three Lunar
Gateway modules where Thales
Alenia Space France is involved,
adapting the Software Factory at

minor cost was mandatory to
ensure OBSW deliveries on
schedule.

Thanks to the extensibility of our
Model-Based OBSW Design

Environment, which is permitted
by the extensibility of CCM
standard, we have successfully
managed adapting our modelling

practices and tooling to be
compliant to both PUS and cFS
standards.

Since those two approaches
address approximatively the

same needs in two different
ways, we have been facing
difficulties to change our habits

in terms of architecture and development.

However, we finally found advantages in cFS,
like the standardization of exchanges between
applications and the software bus, making it
possible to minimize what needs to be modelled

manually (i.e. exchanged data), and what can be
automatically generated (framework-related
elements).

The use of SEDS to represent software
applications interfaces has also proved to be an

efficient mean to share this information through
automated (import/export) processes.
Moreover, the expression capabilities offered by
SEDS grammar, and the fact that its interaction

with our modelling environments (Capella,
CCM4Space) has already been secured during
SAVOIR Electronic Datasheet Definition Use
Cases [1], simplified a lot the development

efforts on our tools.

6. REFERENCES

[1] “[D14-A2] EDS Use Cases Implementation

Report - TASF”, Thales Alenia Space

TAS cFS apps

NASA CFE + cFS apps

SEDS

FSW Design
(CCM4Space)

IDS

SDB

SEDSSRS

SDB
Export

1

2

3

4
5

6

6

1

FSW
Itf

NASA

NASA and other
stakeholders

XTCE

Automatic import

Automatic export

Manual modelling

Delivery

Figure 3:SEDS and OBSW (FSW) development process

