
Leveraging the Eclipse Modeling Framework to work with Electronic Datasheets (a practical guide)

 MBSE 2021 - Model Based Space Systems and Software Engineering (The European Space Agency)

Leveraging the Eclipse Modeling Framework to work with Electronic Datasheets

L. Petersson1, D. Perillo2
1 Lukas Petterson, intern at ESA/ESTEC, Noordwijk, Netherlands
2 Eng David Perillo PhD, ESA/ESTEC, Noordwijk, Netherlands

Email: lukas.petersson@esa.int, david.perillo@esa.int

Abstract — This abstract provides a practical guide to leverage the Eclipse Modeling Framework (EMF) for working with Electronic

Datasheets (EDS). Starting from the SOIS EDS definition, available on the SANA website, it will be explained how to setup an EMF

working environment, and how to generate a Tree Editor for editing and visualizing EDSs. It will also be explained how to exploit
the Acceleo Model2Text (M2T) transformation language to navigate EDS models, and to generate artefacts in an almost automated

manner. The problem of validating EDS models will also be discussed. A simple EDS use case will serve as a running example

throughout the abstract. All the code mentioned in this abstract will be made available on the ESSR website.

1 Introduction

An Interface Control Document (ICD) is a specification document that

describes the interface(s) to a system or subsystem, in terms of its inputs,
outputs, and their relationships. When the ICD is provided as an

unstructured, paper-based document, it can be hard for the user to retrieve

information and translate them into artefacts (for instance, to produce code
and test cases).

 Electronic Data Sheets (EDS) is an alternative approach to paper

based ICDs. It is an abstract concept of digitalized interface documentation
proposed by the Consultative Committee for Space Data Systems (CCSDS).

It is standardized in the context of the Spacecraft Onboard Interface Services

Area (SOIS). The SOIS EDS standard is intended to be portable among
different database implementations, and general enough to describe almost

any device. This comes with the price that reading and editing EDSs models

in their native interchange format (specifically XML) is quite tedious and
error prone. Alternative approaches, such as using an User Interface or a

Domain Specific Language, would therefore be preferred. Motivated by the

need to support the increasing adoption of SEDS, and the consequent request
for open-source tools in support to their utilization, in this abstract we will

illustrate a practical way to leverage the Eclipse Modeling Framework

(EMF) for working with SOIS EDSs models. This includes being able to edit
and visualizing SEDS, to check their consistency, and to automatically

translate them into code or documentation. An overview of the background

material and adopted technologies will be provided in section 2. A practical

workflow to setup the EMF workbench for EDS will be given in section 3.

Code snippets for Model 2 Text generation will be provided in section 4

together with an example EDS representing a simple Device. The problem
of checking EDS consistency models will be discussed in section 5. Our

considerations will be finally provided in the Conclusions.

2 Background material

2.1 SOIS EDS

The SOIS EDS (SEDS) standard documents electronic devices of on-board

spacecrafts with a semi-formal language. It provides modeling constructs to

enclose communication and data handling information in an interchange
format. The documentation of SEDS can be found in two documents named

“Blue Book” and “Green Book” on CCSDS’s website. The SEDS standard

is implicitly bound to XML as its underlying interchange format. Therefore,
the Blue Book comes with an XML Schema Definition (XSD) file

establishing the syntactic definitions of the EDS language [4]. The Blue

Book defines the recommended standard of the XML specification of EDSs

for on-board devices. It answers the “what” and “how” questions, by not only

providing the language specification but also implementation guidelines of

specific modeling patterns as XML snippets. The Green Book is an informal
document with a wide range of information intended to assist readers in

understanding SOIS documentation [5], such as the Dictionary of Terms

(DoT) used in the standard.
 Figure 1 provides an overview of the constructs available in the SOIS

EDS standard, which are also implemented in the SOIS_EDS.XSD schema.

Datasheet is the model root element, containing the Interface definition and
a Package. As an alternative root to the Datasheet element, SEDS allows

having models defined by a Packagefile, whose content Package can be

referenced by Datasheet through the XInclude mechanism. One example of
SEDS is the ccsds.sois.seds.xml Packagefile model [11], containing some

generally-useful types, including: standard c-like types with defined

encoding and range timestamps, quaternions, spin rates and similar space-

domain quantities, that may be reused across in SEDS Datasheets.

Figure 1 - Overview of Selected Key Elements and Abstract Types

of a Datasheet

2.2 Eclipse Modeling Framework

EMF is a modeling framework and code generation facility used in Model

Driven Engineering (MDE) for building tools and other applications based

on a structured data model [9]. Such a model could for example be a SEDS

instance, and it could be used to generate spacecraft engineering artefacts,

such as elements for the System Database and flight software, test procedures
and paper ICDs. All these options have the potential to facilitate and speed

up the spacecraft integration.
 The meta-model of an EMF project is defined using the Ecore

language [10]. EMF generation technology can be used to automatically

convert the EDS definition from its XSD format into the corresponding ecore
metamodel, together with additional Java code [10]. The generated Java code

can be used as it is, for instance to run an auto-generated Tree Editor for

EDS; or it can be extended to implement additional capabilities, such as ad-
hoc validators, custom editors or M2M and M2T transformations.

Figure 2 - EMF workflow starting from XML schema

mailto:lukas.petersson@esa.int
mailto:david.perillo@esa.int

MBSE 2021 - Model Based Space Systems and Software Engineering (The European Space Agency)

3 Setting up of the EMF environment

To being able reproducing the code snippets and examples in this abstract, it

is required to download and install the Eclipse Modeling Tools version

4.17.0; Java 14 and the Acceleo extension.

Figure 3 - installation of additional eclipse plugins

The SOIS EDS schema can be downloaded from the SANA website [11]:

Figure 4 - CWE, CCSDS, SANA Files website

The XInclude schema can be downloaded from w3.org website [12].

3.1 Producing an ecore metamodel for SOIS
EDS

Once all the above dependencies have been satisfied, and Eclipse has been
restarted, it is possible to leverage the EMF Generator technology. Figure 5

depicts the basic steps to initialize an EMF Generator model (Genmodel), so

as to automatically derive the ecore metamodel (seds.ecore) corresponding
to the SOIS_EDS.xsd schema [11]. The xsd to ecore mapping implemented

in EMF, also described in [13], translates almost all xsd constructs to

equivalent ecore ones. However, the automatic translation has some known
issues, such as the non-repeating xsd:choice construct. According to W3C,

xsd:choice “allows only one of the elements contained in the <choice>

declaration to be present within the containing element” [14]. The generated
metamodel do not enforce the non-repeating nature of the constructs, but still

contains the corresponding Entity and Relationships, with valid lower and

upper bounds. The “only one of the elements” rule must be therefore
manually implemented as Java code. In order to make the generated

metamodel suitable to interpret SEDS models using XInclude mechanism,

an Include Entity must be manually created. A useful feature when working
with ecore is the possibility to enrich the metamodel with entity diagrams by

simply dragging/dropping its element on a view. Figure 6 provides a View

of the top-level elements in the SOIS EDS metamodel. The Include Entity
has been created manually to support XInclude references. It matches the

structure of includeType, as defined in the Include.xsd schema [12].

Figure 5 - initialisation of a Genmodel file

Figure 6 - top-level elements in the SOIS EDS metamodel.

Generating Tree Editor and descriptors

The .genmodel file enriches the Ecore model with properties required by the

EMF generation engine. An exhaustive description of all Genmodel

properties is out of scope for this abstract. Therefore, only the most relevant
one for this application will be listed:

 File Extensions: xml (this is the default extension for SEDS)

 Rich Client Platform: true (to generate the editor with additional

extension points, that can be used as standalone RCP application).

 Model Directory (also Edit, Editor and Test Directory):

destination plugin name, followed by destination folder for code.

 Model Plugin-ID: desired name for the generated plugin

Figure 7 depicts the basic steps to generate a plugin project containing the
Java code with the selected properties.

Executing the generated Tree Editor

The generated code contains a file named plugin.xml, from which the default

Tree Editor can be executed as an Eclipse application (see Figure 8).

 Figure 9 shows how an Electronic Datasheets looks like in the generated
Editor. In particular, attributes of the selected model element can be edited

in the Property table.

Figure 8 - execution of the generated tree editor

 Figure 7 - emf code generation from genmodel

MBSE 2021 - Model Based Space Systems and Software Engineering (The European Space Agency)

Figure 9 - example SEDS visualized in the generated Tree Editor

Figure 10 - xml extract of the example SEDS

Integrating a M2T plugin to navigate and
query the model

The Acceleo M2T transformation language is the Eclipse implementation of
the MOFM2T standard, from The Object Management Group® (OMG®). It

is delivered as an Eclipse plugin and provides means for generating textual

artefacts from Ecore models. These can be either documents, reports, or code.
Enabling a model-driven approach to building applications. This is, in many

circumstance, way more convenient than writing all code from scratch [7].

Acceleo uses the Object Constraint Language (OCL), which is a formal
specification language suitable to navigate and to define constraints on the

elements of a model, based on the MOF [7]. Model navigation in OCL can

be implemented with query expressions, which return information satisfying

the stated constraints [6]. For example, the following expression can be used

to retrieve instances of elements having a specific Type, within the scope of

the node PARENT.

PARENT.eAllContents()->selectByType(Type)

Working with SEDS, the expression can be customized as to collect all State

Machines contained in a Package (Figure 11, query collectStateMachine).

The Acceleo language is composed of two main types of structures,
Templates and Queries. The former ones are the main modules for text

generation. Templates can, in turns, execute Queries, which are constructs to

process model elements with OCL [8]. A third kind of construct is the Java
service, which is basically a mean to execute a Java method from within an

Accelo Query. This can be particularly useful to use variable and complex

branching condition which are not possible to implement with the Acceleo
language.

4 Use Cases with result

The Use Case in this section provides an outlook of how to structure Acceleo
code for generating a simple textual artefact: creating an Acceleo project in

the workspace will produce 2 java files and one .mtl file. The Activator class

controls the plug-in life cycle; whereas Generate class has the main java
method to start the generation execution. It invokes the Acceleo generation

methods with arguments defined in the .mtl file. Additional execution

parameters, such as the input model and the output directory, must be
specified in the launch configuration.

Once the generation method is executed, the user has full control of the

generation flow as defined in the main Template structure of the mtl file.

The following Acceleo script navigates SEDS to generate a simple report of

the State Machines contained in the Datasheet.

Figure 11 - Acceleo script reporting State Machines in SEDS

The imported metamodel (seds.ecore) is specified in the [module generate(…)/]

directive (importing more than one metamodel is also possible). The name

and the encoding of the output file are defined within the [file(...)/] directive.
The main template of the transformation is identified by the [comment @main/]

directive. All elements of type StateMachineType are collected in the

collectStateMachines query. In the above script, main template has a for loop
iterating on all element of type StateMachineType; it prints out the name of

its States on one line, and their transitions below it.

 The execution of the above script on the example SEDS file in Figure 10,
produces the textual output in Figure 12. The indentation of the generated

texts follows the indentation of the Acceleo script, making the output text

easy to follow.
 Even though Acceleo has no standard methods to resolve XInclude

directives, it is still possible to implement an Acceleo service for this. In

particular, this could be a Java class similar to the one in Figure 13. The
PackageFiles collection is created by the initialize() method, loading all

Include elements in the Datasheet and storing them into a Map.

 PackageFiles can then be then accessed by their name using the
load_PackageFileTypeByName(String). Method resolvePackageFileType

can be implemented referring at the generated example code.

Figure 12 - textual output of the Acceleo script executed on the

example SEDS

Figure 13 - example Java service class to make available Include

dependencies to the Acceleo generation template

[comment encoding = UTF-8 /]

[module generate('http://www.ccsds.org/schema/sois/seds')]

[template public generateElement(aDataSheetType : DataSheetType)]

[comment @main/]:

[file ('Test', false, 'UTF-8')]

[for (aSM : StateMachineType | aDataSheetType._package.collectStateMachines())]

 State Machine: [aSM.name/]

 States: [for (aState : StateType | aSM.state)][aState.name/], [/for]

 [for (aTrans : TransitionType | aSM.transition)]

 Transition: [aTrans.name/] ([aTrans.fromState/] -> [aTrans.toState/])

 [/for]

[/for]

[/file]

[/template]

[query public collectStateMachines(p : PackageType) : Sequence(StateMachineType)

= p.eAllContents()->selectByType(StateMachineType)/]

MBSE 2021 - Model Based Space Systems and Software Engineering (The European Space Agency)

5 Considerations about EDS Validation

The validity of an EDS model shall be investigated in two directions: syntax

and semantics. The first refers to the grammatical structure of the model, and
the second to how the various symbols interrelate with each other. The

generated EMF code performs a syntactic verification of the SEDS based on

the Entities and Relationships of the seds.ecore metamodel. However, as
already mentioned in section 3.1, the auto-generated seds metamodel do not

enforce the non-repeating nature of the xsd:choice constructs, and a

dedicated Java validation routine must be implemented to take care of this
syntactic definition. As an alternative, SEDS files can be syntactically

verified against the SEDS schema by any standard xml/xsd verification

program, such as “XML Notepad”.

 On the other hand, the semantic validation of the SOIS EDS is way

more difficult to implement. The SOIS EDS Blue Book contains many
semantic rules, each leading to a potential semantic error. In the context of

our analysis, we identified four semantic error categories:

Reference Errors and Type Consistency Errors. Are associated with broken

references among elements in the model. Given that model elements in SEDS

are referenced by their name, in plain text format, it is particularly common
to miss-spell the name of the referenced element (Reference Error) or to

reference an element having a type incompatible with the type of the
destination argument (Type Consistency Error).

 Literal value Errors. Some SEDS elements own an attribute to specify a
default or initial value. This value is also just a String and its compatibility

with the element’s Type need to be checked. For instance, a Fixed Value of

type Integer cannot be set to a non-integer value.

 Name uniqueness Error. SEDS Elements within the same scope cannot have

duplicate names.

 Primitive Association Errors. SEDS defines synchronous and asynchronous

primitives of interface types. Primitive Sink/Source elements which refers to
a synchronous primitive must declare a Transaction attribute, which should

be the same for all elements involved in the same transaction. A simplistic

approach would be to verify whether the same transaction is used at least one
Sink Primitive and at least one Source Primitive. A more thorough validation

would imply to verify whether the Source and Sink primitives carrying the

same Transaction value are connected by a Component.

The analysis of all validation rules and their implementation is probably out

of scope for this abstract and it will be described in a future work.

6 Conclusions

To conclude, we have seen that SEDS are machine-readable interface

specifications which are standardized under SOIS. The documentation and
syntactic definitions of SEDS are available on the CCSDS website [11].

Those documents state that a SEDS has to include interface descriptions,

protocol and procedure descriptions and documentation about the device.
With this definition, a SEDS meta-model can be created using EMF. The

meta-model can then be used to generate a number of spacecraft engineering

artefacts such as elements for the System Database and flight-software,
integration test procedures and paper ICDs. All these options have the

potential to facilitate and speed up the spacecraft integration. In addition to

this, we demonstrated how such a model can be transformed to a human-
readable text file with Acceleo M2T, an Eclipse plugin which uses OCL to

navigate models and generate a txt file. An advantage of this approach is that

the same transformation can be used across different SEDS models,
generating text files having the same format. We have also discussed the need

for semantic validation of SEDS. A detailed identification of semantic errors

and how to detect them in SEDS will be subject of a future work.

References

 [1] En.wikipedia.org. n.d. Interface control document - Wikipedia. [online]

Available at: https://en.wikipedia.org/wiki/Interface_control_document
[Accessed 24 June 2021].

[2] Taylor, C., 2014. [online] Indico.esa.int. Available at:

https://indico.esa.int/event/57/contributions/2705/attachments/2244/2597/A
doptions_of_EDS_and_Device_Virtualisation_for_Onboard_Devices.pdf
[Accessed 24 June 2021].

[4] Public.ccsds.org. 2020. Blue Books: Recommended Standards. [online]
Available at: https://public.ccsds.org/Publications/BlueBooks.aspx
[Accessed 24 June 2021].

[5] Public.ccsds.org. 2020. Green Books: Informational Reports. [online]
Available at: https://public.ccsds.org/Publications/GreenBooks.aspx
[Accessed 24 June 2021].

[6] Cabot, J. and Gogolla, M., 2012. Object Constraint Language (OCL): A
Definitive Guide.

[7] En.wikipedia.org. n.d. Acceleo - Wikipedia. [online] Available at:
https://en.wikipedia.org/wiki/Acceleo [Accessed 24 June 2021].

[8] Di Natale, M., 2013. Code Generation (ModelToText o M2T) with

Acceleo. [online] Available at: http://retis.sssup.it/~marco/files/lesson22-
Acceleob.pdf [Accessed 24 June 2021].

[9] Gronback, R., n.d. Eclipse Modeling Project. [online] Eclipse.org.

Available at: https://www.eclipse.org/modeling/emf/ [Accessed 24 June
2021].

[10] Vogel, L., 2019. Eclipse Modeling Framework (EMF) - Tutorial.

[online] Vogella.com. Available at:
https://www.vogella.com/tutorials/EclipseEMF/article.html [Accessed 24
June 2021].

[11] CWE, CCSDS, SANA Files
https://cwe.ccsds.org/sois/docs/SOIS-APP/SANA%20Files [Accessed 24
June 2021]

[12] XInclude schema
https://www.w3.org/2001/XInclude/#related.resources

 [13] Eclipse.org. 2021. [online] Available at:

https://www.eclipse.org/modeling/emf/docs/overviews/XMLSchemaToEco
reMapping.pdf [Accessed 24 August 2021].

[14] W3schools.com. 2021. XML Schema choice Element. [online]

Available at: https://www.w3schools.com/xml/el_choice.asp [Accessed 24
August 2021].

[15] EMF

https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/e
mf/codegen/ecore/genmodel/GenModel.html [Accessed 24 August 2021].

Author/Speaker Biographies

Lukas Petersson, Engineering Physics student at Lund University, has
joined ESA as Intern at the TEC-SWF section. He is focusing on the Eclipse

Modeling Framework and SOIS EDS.

David Perillo, Software Engineer with a PhD in emerging digital

technologies. He joined ESA in 2020, after more than 10 years working in

the Defence Industry. In TEC-SWF he is looking after R&D activities related
to EDS technologies, MDE, software-emulators, and critical software for

payloads and satellites.

https://en.wikipedia.org/wiki/Interface_control_document
https://indico.esa.int/event/57/contributions/2705/attachments/2244/2597/Adoptions_of_EDS_and_Device_Virtualisation_for_Onboard_Devices.pdf
https://indico.esa.int/event/57/contributions/2705/attachments/2244/2597/Adoptions_of_EDS_and_Device_Virtualisation_for_Onboard_Devices.pdf
https://public.ccsds.org/Publications/BlueBooks.aspx
https://public.ccsds.org/Publications/GreenBooks.aspx
https://en.wikipedia.org/wiki/Acceleo
http://retis.sssup.it/~marco/files/lesson22-Acceleob.pdf
http://retis.sssup.it/~marco/files/lesson22-Acceleob.pdf
https://www.eclipse.org/modeling/emf/
https://www.vogella.com/tutorials/EclipseEMF/article.html
https://cwe.ccsds.org/sois/docs/SOIS-APP/SANA%20Files
https://www.w3.org/2001/XInclude/#related.resources
https://www.eclipse.org/modeling/emf/docs/overviews/XMLSchemaToEcoreMapping.pdf
https://www.eclipse.org/modeling/emf/docs/overviews/XMLSchemaToEcoreMapping.pdf
https://www.w3schools.com/xml/el_choice.asp
https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/codegen/ecore/genmodel/GenModel.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/codegen/ecore/genmodel/GenModel.html

