www.bsc.es

A TASTE of Binary Neural Network Inference for On-Board FPGAs

Jannis Wolf, Leonidas Kosmidis

UNIVERSITAT POLITÈCNICA DE CATALUNYA

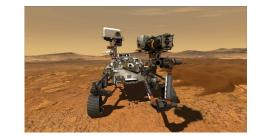
Barcelona Supercomputing Center Centro Nacional de Supercomputación

MBSE 2021

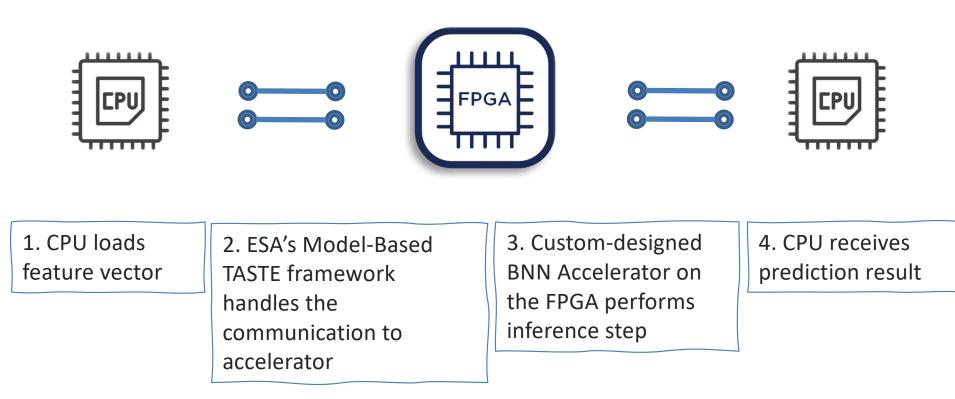
FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

Introduction and Motivation

- (I Increasing interest in artificial intelligence (AI) and machine learning (ML) in space missions: e.g. Mars Perseverance, Φ-Sat-1, OPS-SAT...
- (Existing space processors cannot keep up with their computational needs
- (Use of COTS devices in institutional missions is challenging:
 - (no radiation hardening \rightarrow cannot be (safely) used beyond LEO
 - (Non-space qualified software stacks, lack of RTOS support
- (We present an open source hardware design to increase AI processing capabilities in space:
 - (Low-cost Binarized Neural Network (BNN) accelerator based on TASTE



Combination of CPU, TASTE framework and a BNN FPGA Accelerator



Project Properties

(Operation principle

(Inference off-loading to the FPGA BNN accelerator

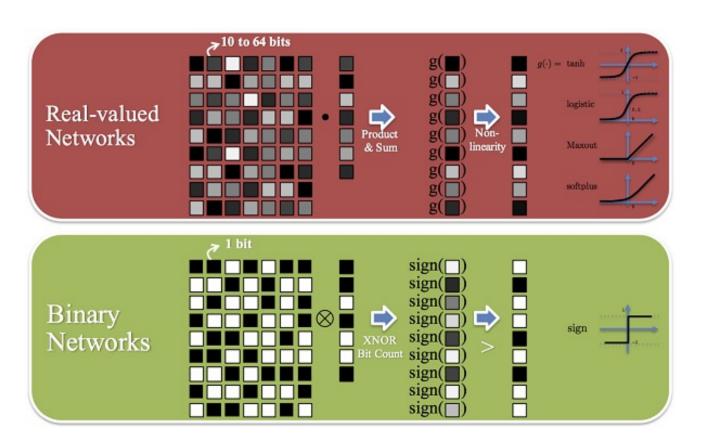
(Reconfigurable design through the FPGA

- (Flexible adaption to neural network parameters
- (Scalable parallelism

(Reliable and Open Source from the ground up:

- (TASTE correct-by-construction communication: software driver and hardware communication mechanism generation
- (Hand-written VHDL open source code for the accelerator assisted by a Python framework for training and model-in-the-loop verification

Binarized Neural Networks



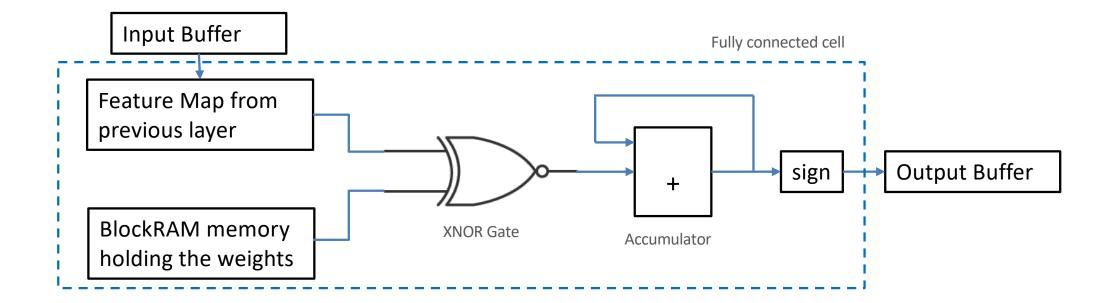
Binarization

- (MAC operation is simplified to XNOR and set bit count operation
- (Reduces memory usage up to 1/32
- (Only marginal performance loss shown in scientific literature

Source: https://www.codeproject.com/Articles/1185278/Accelerating-Neural-Networks-with-Binary-Arithmetic

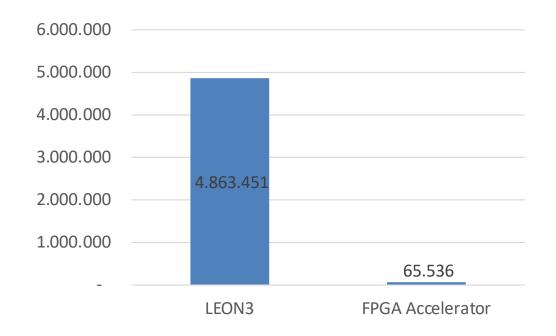
FPGA Binary Neural Network Accelerator

Basic principle: Fully connected layer cells attached through buffers



Preliminary Evaluation on Simulation

Clock cycles needed for one MNIST pass through fully connected layer with size (512, 512) on a LEON3 and on the BNN accelerator



Speed Up of about 74x. But:

- Communication overhead is not considered
- (LEON3 simulation only with TSIM
- → Speed up expected to be smaller in reality

(Parallelization inside layer

(Parallel fully connected cells are only limited by available number of BRAM

(Pipelining over layers

(Instead of sequential calculation on the CPU, the first layer can start with the next feature vector after completing the previous one

(Low memory usage

(Effective load and store of weights

Main Components

(The Project consists of three main components to enable MBD

Binary PyTorch

- Python Library extending PyTorch for Binary Training functionality
- Export function of the weights to BRAM compatible files

VHDL BNN Components

 Library of Accelerator subcomponents written in VHDL with generic sizes

TASTE

- Code skeleton generation for the communication of CPU and Accelerator
- Build System for
 Deployment on
 Target Device

Workflow: Model Training

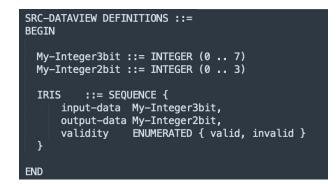
- (Training the Neural Network using Binary PyTorch
- (Allows to experiment with various BNN models for early design space exploration
- (Test in a model-in the loop fashion
- (Resulting model weights can then be exported for the next steps

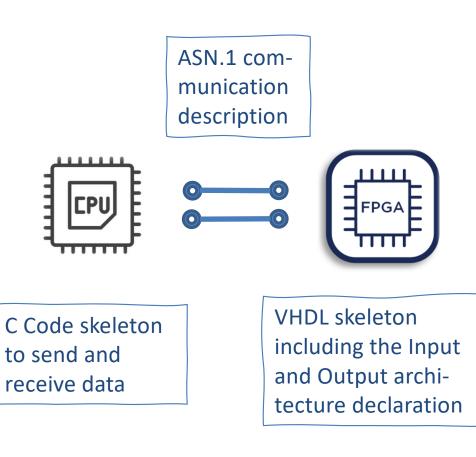
Binary PyTorch Classes

- BinaryFullyConnected()
 - export_weights()
- BinaryOptimizer()

Workflow: TASTE Code Generation

- (Communication Code Skeleton Generation
- (Specify the data format sent and received between CPU and FPGA in ASN.1 notation
- (TASTE returns Code skeleton in C and VHDL





TASTE's code generation

Workflow: Software Side

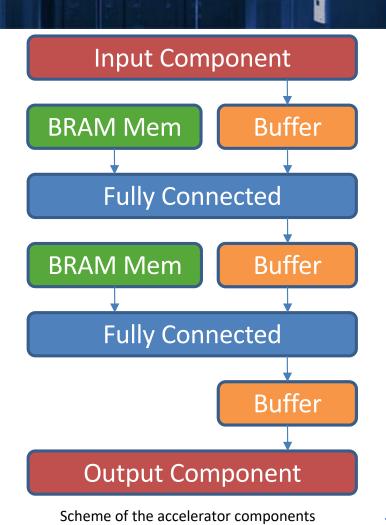
- (Implement C functions
- (C Code skeleton is used to implement the sending and receiving of data on the software side

1	/* User code: This file will not be overwritten by TASTE. */
	<pre>#include "speak_to_hw.h"</pre>
	<pre>void speak_to_hw_startup()</pre>
	{
	/* Write your initialization code here,
	but do not make any call to a required interface. */
	}
10	
	<pre>void speak_to_hw_PI_pulse()</pre>
	{
	/* Write your code here! */
	}

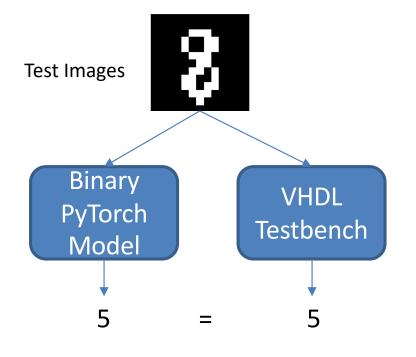
C code skeleton generated by TASTE

Workflow: Hardware Side

- (Implementation of the Accelerator into the VHDL skeleton
- (Has to be done manually by the designer (space for automation in the future)
- (Facilitated through the set of VHDL BNN components that resemble the PyTorch classes



- (Verification of the inference results in simulation
- (Writing testbenches and check against the PyTorch results
- (Finding errors early before costly deployment
- (Although not completely automated, this allows software-in the loop testing



Workflow: Deployment with TASTE's Build System

- (Deployment on target platform
- (TASTE features different deployment nodes (LEON3/RTEMS, x86/Linux)
- (Hardware compatibility shown for Spartan3 and is being developed for Xilinx's Zynq based SoCs [1]
- (Hardware-in-the-loop Verification concludes the design process



Xilinx's Zynq SoC

Advantages of Model Based Design

(Structure of complex project through code generation

- (TASTE correct-by-construction communication
- **(C)** Software and Hardware design moves closer together

(Reusability of VHDL Code for custom BNN Accelerator generation

(Flexible adaption to neural network parameters

(Integration into different architectures through TASTE

Conclusions and Future Work

- (FPGA BNN neural network accelerator achieving speedups of 74x compared to a baseline LEON3 processor (tsim)
 - (Move from simulation to deployment on a FPGA
 - (Evaluation with space-relevant ML benchmarks: OBPMark and MLAB presented at OBDP 2021

(How Model Based Design supports the design process of custom accelerator

(Automatic code generation integrated with TASTE and PyTorch

References and Acknowledgements

(The project's source code can be found on GitHub:

- (BNN Accelerator: www.github.com/JannisWolf/fpga_bnn_accelerator
- (This work is partially supported by:
 - (the Xilinx University Program (XUP) and XUP Board Partner Red Pitaya
 - (ESA under the GPU4S (GPU for Space) project (ITT AO/1-9010/17/NL/AF)
 - (European Commission's Horizon 2020 programme under the UP2DATE project (grant agreement 871465)
 - (the Spanish Ministry of Economy and Competitiveness (MINECO) under grants PID2019-107255GB and FJCI-2017-34095
 - (the HiPEAC Network of Excellence

www.bsc.es

A TASTE of Binary Neural Network Inference for On-Board FPGAs

Jannis Wolf, Leonidas Kosmidis

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Barcelona Supercomputing Center Centro Nacional de Supercomputación

MBSE 2021

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG