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Increasing interest in artificial intelligence (AI) and machine learning (ML) in space 
missions: e.g. Mars Perseverance, Φ-Sat-1, OPS-SAT…
Existing space processors cannot keep up with their computational needs
Use of COTS devices in institutional missions is challenging: 

no radiation hardening à cannot be (safely) used beyond LEO
Non-space qualified software stacks, lack of RTOS support

We present an open source hardware design to increase AI processing 
capabilities in space:

Low-cost Binarized Neural Network (BNN) accelerator based on TASTE

Introduction and Motivation
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Combination of CPU, TASTE framework and a BNN FPGA Accelerator

FPGA Binary Neural Network (BNN) Accelerator
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1. CPU loads 
feature vector

2. ESA’s Model-Based 
TASTE framework 
handles the
communication to 
accelerator

3. Custom-designed 
BNN Accelerator on 
the FPGA performs 
inference step

4. CPU receives 
prediction result



Operation principle
Inference off-loading to the FPGA BNN accelerator

Reconfigurable design through the FPGA
Flexible adaption to neural network parameters
Scalable parallelism 

Reliable and Open Source from the ground up:
TASTE correct-by-construction communication: software driver and 
hardware communication mechanism generation
Hand-written VHDL open source code for the accelerator assisted by 
a Python framework for training and model-in-the-loop verification

Project Properties
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Binarization
MAC operation is 
simplified to XNOR 
and set bit count 
operation
Reduces memory 
usage up to 1/32
Only marginal 
performance loss 
shown in scientific 
literature

Binarized Neural Networks
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Source: https://www.codeproject.com/Articles/1185278/Accelerating-Neural-Networks-with-Binary-Arithmetic



Basic principle: Fully connected layer cells attached through buffers

FPGA Binary Neural Network Accelerator
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AccumulatorXNOR GateBlockRAM memory 
holding the weights

Feature Map from 
previous layer

+ Output Buffer

Input Buffer

sign

Fully connected cell



Clock cycles needed for one MNIST pass through fully connected layer
with size (512, 512) on a LEON3 and on the BNN accelerator

Preliminary Evaluation on Simulation
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Speed Up of about 74x. But:
Communication overhead 
is not considered
LEON3 simulation only 
with TSIM

à Speed up expected to 
be smaller in reality



Parallelization inside layer
Parallel fully connected cells are only limited by available number of 
BRAM

Pipelining over layers
Instead of sequential calculation on the CPU, the first layer can start 
with the next feature vector after completing the previous one

Low memory usage
Effective load and store of weights

Why is this very fast?
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Main Components
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The Project consists of three main components to enable MBD

Binary PyTorch

- Python Library 
extending PyTorch 
for Binary Training 
functionality

- Export function of 
the weights to BRAM 
compatible files

TASTE

- Code skeleton 
generation for the 
communication of 
CPU and Accelerator

- Build System for 
Deployment on 
Target Device

VHDL BNN Components 

- Library of 
Accelerator 
subcomponents 
written in VHDL with 
generic sizes



Training the Neural Network using Binary 
PyTorch

Allows to experiment with various BNN 
models for early design space exploration

Test in a model-in the loop fashion

Resulting model weights can then be
exported for the next steps

Workflow: Model Training
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Binary PyTorch Classes

- BinaryFullyConnected()
- export_weights()

- BinaryOptimizer()



Communication Code Skeleton 
Generation

Specify the data format sent and 
received between CPU and FPGA in 
ASN.1 notation

TASTE returns Code skeleton in C 
and VHDL 

Workflow: TASTE Code Generation
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C Code skeleton 
to send and 
receive data

VHDL skeleton 
including the Input 
and Output archi-
tecture declaration

ASN.1 com-
munication 
description

TASTE‘s code generation



Implement C functions

C Code skeleton is used to 
implement the sending and 
receiving of data on the software 
side

Workflow: Software Side
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C code skeleton generated by TASTE



Implementation of the Accelerator into 
the VHDL skeleton

Has to be done manually by the designer 
(space for automation in the future)

Facilitated through the set of VHDL BNN 
components that resemble the PyTorch
classes

Workflow: Hardware Side
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Input Component

BRAM Mem Buffer

Fully Connected

BRAM Mem Buffer

Fully Connected

Buffer

Output Component
Scheme of the accelerator components



Verification of the inference results in 
simulation

Writing testbenches and check against the 
PyTorch results

Finding errors early before costly 
deployment

Although not completely automated, this 
allows software-in the loop testing 

Workflow: Verification
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Binary 
PyTorch 
Model

VHDL 
Testbench

Test Images
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Workflow: Deployment with TASTE’s Build System

15

Zynq 7000

ARM 
DUAL 
CORE

FPGAAXI

Xilinx‘s Zynq SoC

[1]

Deployment on target platform

TASTE features different deployment 
nodes (LEON3/RTEMS, x86/Linux)

Hardware compatibility shown for 
Spartan3 and is being developed for 
Xilinx’s Zynq based SoCs [1]

Hardware-in-the-loop Verification 
concludes the design process



Advantages of Model Based Design
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Structure of complex project through code generation
TASTE correct-by-construction communication
Software and Hardware design moves closer together

Reusability of VHDL Code for custom BNN Accelerator generation
Flexible adaption to neural network parameters

Integration into different architectures through TASTE



FPGA BNN neural network accelerator achieving speedups of 74x compared to 
a baseline LEON3 processor (tsim)

Move from simulation to deployment on a FPGA
Evaluation with space-relevant ML benchmarks: OBPMark and MLAB presented 
at OBDP 2021

How Model Based Design supports the design process of custom accelerator 
Automatic code generation integrated with TASTE and PyTorch

Conclusions and Future Work
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The project’s source code can be found on GitHub:
BNN Accelerator: www.github.com/JannisWolf/fpga_bnn_accelerator 
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