
A TASTE of Binary Neural Network
Inference for On-Board FPGAs

Jannis Wolf, Leonidas Kosmidis

www.bsc.es

MBSE 2021

Increasing interest in artificial intelligence (AI) and machine learning (ML) in space
missions: e.g. Mars Perseverance, Φ-Sat-1, OPS-SAT…
Existing space processors cannot keep up with their computational needs
Use of COTS devices in institutional missions is challenging:

no radiation hardening à cannot be (safely) used beyond LEO
Non-space qualified software stacks, lack of RTOS support

We present an open source hardware design to increase AI processing
capabilities in space:

Low-cost Binarized Neural Network (BNN) accelerator based on TASTE

Introduction and Motivation

2

Combination of CPU, TASTE framework and a BNN FPGA Accelerator

FPGA Binary Neural Network (BNN) Accelerator

3

1. CPU loads
feature vector

2. ESA’s Model-Based
TASTE framework
handles the
communication to
accelerator

3. Custom-designed
BNN Accelerator on
the FPGA performs
inference step

4. CPU receives
prediction result

Operation principle
Inference off-loading to the FPGA BNN accelerator

Reconfigurable design through the FPGA
Flexible adaption to neural network parameters
Scalable parallelism

Reliable and Open Source from the ground up:
TASTE correct-by-construction communication: software driver and
hardware communication mechanism generation
Hand-written VHDL open source code for the accelerator assisted by
a Python framework for training and model-in-the-loop verification

Project Properties

4

Binarization
MAC operation is
simplified to XNOR
and set bit count
operation
Reduces memory
usage up to 1/32
Only marginal
performance loss
shown in scientific
literature

Binarized Neural Networks

5
Source: https://www.codeproject.com/Articles/1185278/Accelerating-Neural-Networks-with-Binary-Arithmetic

Basic principle: Fully connected layer cells attached through buffers

FPGA Binary Neural Network Accelerator

6

AccumulatorXNOR GateBlockRAM memory
holding the weights

Feature Map from
previous layer

+ Output Buffer

Input Buffer

sign

Fully connected cell

Clock cycles needed for one MNIST pass through fully connected layer
with size (512, 512) on a LEON3 and on the BNN accelerator

Preliminary Evaluation on Simulation

7

4.863.451

65.536
 -

 1.000.000

 2.000.000

 3.000.000

 4.000.000

 5.000.000

 6.000.000

LEON3 FPGA Accelerator

Speed Up of about 74x. But:
Communication overhead
is not considered
LEON3 simulation only
with TSIM

à Speed up expected to
be smaller in reality

Parallelization inside layer
Parallel fully connected cells are only limited by available number of
BRAM

Pipelining over layers
Instead of sequential calculation on the CPU, the first layer can start
with the next feature vector after completing the previous one

Low memory usage
Effective load and store of weights

Why is this very fast?

8

Main Components

9

The Project consists of three main components to enable MBD

Binary PyTorch

- Python Library
extending PyTorch
for Binary Training
functionality

- Export function of
the weights to BRAM
compatible files

TASTE

- Code skeleton
generation for the
communication of
CPU and Accelerator

- Build System for
Deployment on
Target Device

VHDL BNN Components

- Library of
Accelerator
subcomponents
written in VHDL with
generic sizes

Training the Neural Network using Binary
PyTorch

Allows to experiment with various BNN
models for early design space exploration

Test in a model-in the loop fashion

Resulting model weights can then be
exported for the next steps

Workflow: Model Training

10

Binary PyTorch Classes

- BinaryFullyConnected()
- export_weights()

- BinaryOptimizer()

Communication Code Skeleton
Generation

Specify the data format sent and
received between CPU and FPGA in
ASN.1 notation

TASTE returns Code skeleton in C
and VHDL

Workflow: TASTE Code Generation

11

C Code skeleton
to send and
receive data

VHDL skeleton
including the Input
and Output archi-
tecture declaration

ASN.1 com-
munication
description

TASTE‘s code generation

Implement C functions

C Code skeleton is used to
implement the sending and
receiving of data on the software
side

Workflow: Software Side

12

C code skeleton generated by TASTE

Implementation of the Accelerator into
the VHDL skeleton

Has to be done manually by the designer
(space for automation in the future)

Facilitated through the set of VHDL BNN
components that resemble the PyTorch
classes

Workflow: Hardware Side

13

Input Component

BRAM Mem Buffer

Fully Connected

BRAM Mem Buffer

Fully Connected

Buffer

Output Component
Scheme of the accelerator components

Verification of the inference results in
simulation

Writing testbenches and check against the
PyTorch results

Finding errors early before costly
deployment

Although not completely automated, this
allows software-in the loop testing

Workflow: Verification

14

Binary
PyTorch
Model

VHDL
Testbench

Test Images

5 = 5

Workflow: Deployment with TASTE’s Build System

15

Zynq 7000

ARM
DUAL
CORE

FPGAAXI

Xilinx‘s Zynq SoC

[1]

Deployment on target platform

TASTE features different deployment
nodes (LEON3/RTEMS, x86/Linux)

Hardware compatibility shown for
Spartan3 and is being developed for
Xilinx’s Zynq based SoCs [1]

Hardware-in-the-loop Verification
concludes the design process

Advantages of Model Based Design

16

Structure of complex project through code generation
TASTE correct-by-construction communication
Software and Hardware design moves closer together

Reusability of VHDL Code for custom BNN Accelerator generation
Flexible adaption to neural network parameters

Integration into different architectures through TASTE

FPGA BNN neural network accelerator achieving speedups of 74x compared to
a baseline LEON3 processor (tsim)

Move from simulation to deployment on a FPGA
Evaluation with space-relevant ML benchmarks: OBPMark and MLAB presented
at OBDP 2021

How Model Based Design supports the design process of custom accelerator
Automatic code generation integrated with TASTE and PyTorch

Conclusions and Future Work

17

The project’s source code can be found on GitHub:
BNN Accelerator: www.github.com/JannisWolf/fpga_bnn_accelerator

This work is partially supported by:
the Xilinx University Program (XUP) and XUP Board Partner Red Pitaya
ESA under the GPU4S (GPU for Space) project (ITT AO/1-9010/17/NL/AF)
European Commission's Horizon 2020 programme under the UP2DATE
project (grant agreement 871465)
the Spanish Ministry of Economy and Competitiveness (MINECO) under
grants PID2019-107255GB and FJCI-2017-34095
the HiPEAC Network of Excellence

References and Acknowledgements

18

http://www.github.com/JannisWolf/fpga_bnn_accelerator

A TASTE of Binary Neural Network
Inference for On-Board FPGAs

Jannis Wolf, Leonidas Kosmidis

www.bsc.es

MBSE 2021

