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ABSTRACT 

Model-Based Systems Engineering (MBSE) is a development approach aiming to build correct-by-construction systems, 

provided the use of clear, unambiguous and complete models to describe them along the design process. The approach is 

supported by several engineering tools that automate the development steps, for example the production of code, 

documentation, test cases and more. 

TASTE [1] is pragmatic MBSE toolset supported by ESA that encapsulates several technologies to design a system (data 

modelling, architecture modelling, behaviour modelling/implementation), to automatically generate the binary 

application(s), and to validate it. One topic left open in TASTE is the formal verification of a system design with respect 

to specified properties. In this paper we describe our approach based on the IF model-checker [4] to enable the formal 

verification of properties on TASTE designs. The approach is currently under development in the ESA MoC4Space 

project. 

1 INTRODUCTION 

Developing space systems is a difficult task, where the engineers need to address two challenges: (1) how to design large 

and complex systems with minimal effort and cost, and (2) how to ensure that the designed system is correct with respect 

to its requirements. Model-Based Systems Engineering (MBSE) is an adopted development approach aiming to address 

the above challenges by enabling correct-by-construction system design from which the implementation could be 

generated and deployed on the target platforms.  

More specifically, MBSE allows to produce unambiguous, consistent and coherent designs of the system which can be 

subject to validation and verification with respect to system properties during the development cycle. By design we 

understand system architecture, behaviour and data types, as well as deployment strategy. By validation and verification 

we understand an assortment of techniques including design review, testing, interactive simulation and model-checking. 

While the first three methods allow to detect errors within the design in a lightweight manner (i.e., only a subset of the 

system’s behaviours are evaluated), model-checking exhaustively analyses the system’s behaviour and gives a verdict for 

property satisfaction. 

TASTE [1] is an MBSE toolset supported by ESA which enables system design and validation. Several languages are 

available for system design: ASN.1 for data types, a flavour of AADL for hierarchical architecture, SDL for behaviour 

modelling, and Ada/C/C++ when manual coding is needed. The toolset offers as features static type analysis, real-time 

scheduling analysis, code generation and binary applications generation for target platforms, as well as simulation, 

debugging and testing. A feature not yet supported by the toolset is the formal verification of the system design with 

respect to system properties.  

The ESA Model-Checking for Formal Verification of Space Systems (MoC4Space) project1 aims to develop and integrate 

in TASTE various model-checking tools to automate the formal verification of system properties. In the following we 

describe the approach considered and the development status.   

2 MODEL-CHECKING TASTE DESIGNS 

2.1 Overview 

The proposed model-checking approach for a TASTE design and related properties, consists of the following steps as 

illustrated in the workflow from Figure 1:  

                                                           

1 This project is funded by the European Space Agency under contract number 4000133658/21/NL/CRS. 
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1) The user designs the system with TASTE. The design consists of data view 

(ASN.1 data types), interface view (AADL hierarchical system 

architecture), SDL state machines/C implementation/GUI function (system 

behaviour). 

2) The user specifies with TASTE the safety properties the system shall fulfil. 

Properties can be specified in three ways, from the least to the most 

expressive: Boolean stop conditions, Message Sequence Chart properties, 

and dynamic observer properties.  

3) The user invokes the model-checker. The user selects the properties to be 

checked from those specified and sets the configuration of the model-

checker. The model-checker works on the system design and the specified 

properties. The system behaviour is explored and the properties satisfaction 

is checked on all possible behaviours. A result is provided to the user: either 

the properties are validated and a message is displayed, or a property is 

violated and diagnostic traces are produced.  

4) The user checks the result provided by the model-checker. If the properties 

are satisfied, then the workflow stops. If the property is not satisfied, the 

obtained diagnostic traces are played in TASTE and assessed individually. 

If the diagnostic trace shows a valid behaviour for the system, then the 

defect is corrected and the process starts again. If the diagnostic trace shows 

an invalid behaviour, the next available diagnostic trace is analysed or the 

process stops. (Note that the model-checker will intentionally explore a 

superset of the system’s executions, in particular by relaxing certain 

scheduling constraints. In consequence, diagnostic traces can show invalid 

behaviours.) 

2.2 Tool Design 

To enable the workflow explained above, the following extensions are required: (1) property specification in TASTE, (2) 

model-checker for TASTE designs and properties and (3) seamless integration of the approach in the TASTE GUI. 

2.2.1 Property Specification in TASTE 

Three types of properties are considered for model-checking: Boolean stop conditions (BSC), Message Sequence Charts 

(MSC), and dynamic observers.  

Boolean stop conditions describe invalid behaviour of the system, e.g., stop if (battery_level < 10). These properties are 

Boolean expressions that express system invariants (through their negation) and that should not evaluate to true at any 

point during the execution.  Informally, the satisfaction of the Boolean condition means that an undesired state has been 

reached, and therefore the system design is not correct. Such properties are modelled in TASTE as dynamic observers in 

OpenGEODE (see below). The user will select BSC property from a dedicated menu in the TASTE GUI, and an SDL 

observer (with 2 states and 1 decision) is generated and displayed using OpenGEODE. Then the user can directly specify 

the condition with the available SDL syntax for observers. 

MSC properties describe the (un)desired behaviour of the system as a sequence of I/O events happening between the 

system’s functions. Such properties are specified using the MSC editor available in TASTE. The user will select MSC 

property from the dedicated TASTE GUI menu, and the MSC editor is opened for the user to specify the property. The 

meaning of an MSC as a system property depends of specific annotations: property type: search [[from-start|nonstrict]] 

((intended|unintended)) or property type: verify [[from-start]] intended, where [[ ]] denotes an optional part and | denotes 

a choice. Search indicates that the model-checker will look for a system execution complying with the MSC. Verify 

indicates that all system executions must comply with (a prefix of) the MSC. From-start indicates that the MSC shall be 

matched from the beginning of the execution between the specified functions. Nonstrict indicates that other I/O events 

that are not specified can happen between the functions. Intended indicates that the MSC is a desired execution sequence, 

while unintended indicates that the MSC is an undesired sequence. Then the model-checker will provide a result 

consistently with the type of property indicated by the user. 

Dynamic observers describe both desired and undesired behaviour of the system in the form of state machines. They are 

the most expressive properties considered, as they can monitor the system execution, but also alter it for example to guide 

the verification process. Observers are represented as SDL state machines in OpenGEODE. The user will select the 

Observer property in the dedicated TASTE GUI menu, and OpenGEODE will be displayed in which the property is 

modelled. The user has then access to the SDL extensions for observers that allow them to observe (1) the state of the 

TASTE system at a point in its execution (specifically, the values of variables and state machine location for the functions) 

Figure 1. TASTE model-checking 

approach workflow. 



and (2) the events that occurred during the last atomic transition taken by one of the SDL functions of the TASTE system. 

The user specifies whether the execution is desired or undesired by labelling the states of the observer with success or 

error accordingly. Then the model-checker will correctly assess the property on the system executions. 

 

(a) 

 

(b) 

Figure 2. Examples of properties with TASTE: (a) Boolean stop condition / dynamic observer modelling an error if the battery level is 

lower than 10 units, (b) MSC property modelling that if the battery level drops below 15 the FDIR stops the system. 

2.2.2 Integrated Model-Checking 

Model-checking ([2], [3]) is a well-known formal verification technique for the system correctness with respect to a set 

of properties. It consists in building a finite state-space model of the system under analysis and checking the properties 

on this model. The check itself amounts to a complete or partial exploration of the state space, potentially guided by the 

properties. The main advantage of model-checking is that it can be fully automated. Moreover, it allows for the production 

of diagnostic traces when a property is not verified, that can help the engineer to correct the design. The main drawback 

is, however, the potential size of the state-space model which depends on the system complexity and which could make 

model-checking infeasible. 

Several solutions can be considered for developing a model-checker for TASTE: (1) re-use of an existing off-the-shelf 

model-checker (e.g., IF [4], UPPAAL [5]), (2) re-use an existing open model checker platform (e.g., LTSmin [6]) or (3) 

develop a dedicated model-checker. From the trade-off analysis of the different options, we have selected to re-use the IF 

toolset as model-checking back-end.  

The IF toolset [4] is an environment for modelling and validating real-time systems, characterised by the following key 

features: (1) a modelling formalism (also called IF) based on extended Timed Automata with urgencies and asynchronous 

FIFO-based communication, syntactically and semantically close to SDL, (2) properties specification to be validated on 

models as dynamic observers, (3) combined use of various validation techniques including model-checking, static analysis 

of the IF model representation and simulation, (4) generation of diagnostic traces in the case of property violations, and 

(5) support for high level modelling with formalisms such as SDL, UML, SysML used in industrial CASE tools, through 

translation of high level models into the IF notation. 

Using the IF model-checker as back-end requires that bidirectional transformation are defined between TASTE and IF. 

These transformations cover (1) generating the IF system model from the TASTE design views, (2) generating the IF 

observers from the TASTE system properties, and (3) generating TASTE MSC representation from the model-checker 

diagnostic traces. An overview of the tool architecture in provided in Figure 3.  

 

Figure 3. TASTE model-checking tool architecture. Boxes in red represent new/enhanced modules, black arrows existing 

information/dependency flow, and red arrows new information/dependency flow. 



Model transformation implies obtaining an IF representation from the TASTE design. This module is composed of several 

components. ASN2IF transforms the ASN.1 datatypes specified in the TASTE data view to IF datatypes. AADL2IF 

transforms the system structure specified in the TASTE interface view to an IF model. This component also handles the 

specific transformation for GUI functions (modelling the environment), C functions behaviour and timers specified in the 

interface view. SDL2IF transforms the behaviour of SDL functions modelled as state machines to IF processes. 

Property transformation implies obtaining an IF observer for each TASTE system property. A dynamic SDL observer is 

transformed to an IF observer (OBS2IF) in mostly the same way as an SDL state machine is transformed to an IF process. 

In fact, the OBS2IF component is an extension of SDL2IF component with the specific handling of the observers’ syntax 

and semantics. A BSC property is modelled as an SDL observer, so the same OBS2IF component is used for obtaining 

an IF observer from them. Finally, an MSC property is also transformed into an SDL observer (MSC2OBS). This 

transformation has the benefit of obtaining and displaying graphically the property to be checked into another formalism 

known by the user, i.e., SDL. Also, the user has the possibility of enhancing the property represented as SDL observer as 

desired, since observers are more expressive than MSC properties. Then the OBS2IF is called on the SDL observer 

representation of the MSC to obtain the corresponding IF property that will be checked. 

Diagnostic transformation implies obtaining an MSC from the diagnostic traces provided by IF (SCN2MSC). The IF 

model-checker provides diagnostic traces as a sequence of IF transitions steps, each including labels of the actions 

executed (inputs, outputs, process creation, deletion, etc.). MSC is the most usable formalism to visualize such diagnostic 

traces and to replay them in the TASTE environment, thus easing the understanding of the result(s). 

To provide a seamless integration in TASTE of the model-checker, the TASTE GUI is extended with a model-checker 

configurator and launcher (see Figure 3). The configurator allows to specify the environment of the system under 

validation, the properties to be checked and the model-checker options (e.g., number of diagnostic traces generated, 

number of states explored), The launcher allows to call and stop the IF model-checker. The TASTE build system is also 

extended to invoke the above-mentioned transformations and model-checker. 

2.3 Tool Validation 

The TASTE model checking approach is validated on two industrial case studies: the IXV mission and the ERGO 

planetary scenario [7]. The IXV mission aimed to define the basic needs for re-entry from Low Earth Orbit. The case 

study considered in this activity is a subset of the fully-automated on-board software that focuses in the flaps control 

system. The ERGO planetary scenario is inspired by the Mars Sample Return (MSR) mission that covers the concepts 

and requirements of the Martian Long Range Autonomous Scientist. The case study considered in this activity consists 

of a subset of functionalities, “simulating” (simplified) traverse and sample collection, image acquisition, as well as 

system commanding in E1 (telecommanding) and E4 (goal commanding) autonomy modes. Both case studies have been 

modelled in TASTE with the concepts supported by the model-checker and several properties of each type have been 

defined for both (the complete TASTE design is available at [8]). The model-checking approach will be used to check 

the correctness of the modelled systems with respect to their properties. Also, errors are specifically introduced in the 

system design to validate the model-checking results. 

3 DISCUSSION 

The MoC4Space project aims to develop formal verification system designs and properties modelled with TASTE. The 

model-checking approach has been defined, as well as the tool architecture based on the existing IF model-checker as 

backend. The implementation of the integrated model-checking tool (property modelling editors, ASN2IF and SDL2IF) 

is ongoing. The approach and tool are validated and will be used to verify two space systems case studies fully developed 

with TASTE for the purpose of the activity. 
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