
© GMV - 29/09/2021 - All rights reserved

Formal Verification of
Space Systems
Designed with TASTE

Iulia Dragomir

GMV

Model Based Space Systems and Software
Engineering (MBSE) 2021

September 29th, 2021

(Courtesy of ESA)

⊨

IF Toolset
model-checking

MoC4Space

© GMV – 29/09/2021 – MBSE’21

Outline

Introduction

Model-checking TASTE Designs

Approach Validation

Status

Page 2© GMV – 29/09/2021 – MBSE’21

© GMV – 29/09/2021 – MBSE’21

Introduction

 MBSE is an established development approach that enables:

 Designing large and complex systems with minimal effort and costs

 System design includes, among others, software: data types,

architecture, behaviour, deployment on processing units

 Obtaining correct-by-construction implementations/deployments wrt system requirements with the help
of (formal) V&V

 V&V includes an assortment of techniques such as design review, testing, simulation and model-
checking

 TASTE is an MBSE toolset that allows:

 Designing a real-time software system by means of consistent multi-view modelling

 Generating automatically the application’s executable(s)

 Checking the system correctness by static type analysis, real-time scheduling, simulation and testing

 Open topic: formal V&V of TASTE designs

 ESA MoC4Space project (2021-2022) addresses this shortcoming by integrating a formal V&V
approach based on model-checking in TASTE

Page 3

SherpaTT during the field tests of the ADE
demonstrator developed with TASTE

(Courtesy of DFKI)

© GMV – 29/09/2021 – MBSE’21

Formal Verification Approach

Page 4

Step 1: Design the desired
system with TASTE: data
view, interface view, SDL
state machines / C code

Step 2: Model the properties in
TASTE as a Boolean stop condition,
MSC or SDL observer

Step 3: Invoke the automated
verification technique (i.e.,
model-checker)

 Select property to check

 Select the design subset
on which the property
should hold

 Set model-checker
parameters (e.g.,
subtyping, time limit for
verification, number of
scenarios to obtain)

Step 4: Analyse the result obtained

 If the property is satisfied, the
workflow stops

 If the property is violated,
assess the diagnostic traces

Step 5: Analyse the diagnostic
traces one-by-one in the TASTE
environment and correct the
system design/modelled property if
applicable

© GMV – 29/09/2021 – MBSE’21

Step 1

Step 2

Step 3

Step 4

Step 5

Step 1: System Design with TASTE

Page 5

© GMV – 29/09/2021 – MBSE’21

TASTE

 Model-based development of heterogeneous, reactive,
discrete embedded systems

 Uses several modelling formalisms (ASN.1, AADL , SDL, etc.)
or programming languages (e.g., C)

 A TASTE design consists of:

 Data view (in ASN.1)

 Hierarchical interface views (software architecture
and behaviour)

 Communication is based on the notion of interfaces:
 Cyclic: execute a behaviour at a certain frequency
 Sporadic: whenever a request is received handle it
 Protected: handle the request and provide an

answer

 Behaviour is either modelled as SDL state machines
or implemented in C

 Deployment view

 Concurrency view computed from the above

Page 6

Data view

Excerpt from ERGO case
study TASTE design

Interface view

SDL behavior

Deployment
view

© GMV – 29/09/2021 – MBSE’21

Step 1

Step 2

Step 3

Step 4

Step 5

Step 2: Property Modelling

Page 7

3 types of properties:
 Boolean stop condition (BSC)
 Message Sequence Chart (MSC)
 Observer (in SDL)

© GMV – 29/09/2021 – MBSE’21

Boolean Stop Condition Properties

 Describe undesired behaviour of the system: stop if (condition)

 The condition is expressed over TASTE system states and variables

 The evaluation to true of the condition implies that the property is not satisfied, and hence the
design/property need to be corrected

 Directly accessible in TASTE space-creator GUI

 Modelled by the user as observers in OpenGEGODE

 The property skeleton is automatically generated

 The user specifies the condition in TASTE SDL observer

language (already available)

Page 8

Property: the level of battery 1 shall not
drop to the critical value of 10 units

© GMV – 29/09/2021 – MBSE’21

Message Sequence Chart Properties

 Describe desired/undesired sequences of I/O events between some of the functions defined in the
Interface View

 Properties available to the user

search [[from-start | nonstrict]]

((intended | unintended))

verify [[from-start]] intended

 Directly accessible in TASTE space-creator GUI

 Modelled with the available TASTE MSC editor,
property type specified via a comment

Page 9

search: find a system execution complying to the
MSC

verify: all system executions comply to the MSC

from-start: the execution is matched from the

beginning of interactions between the

represented functions

nonstrict: other interactions can happen
between the represented functions

intended: desired behavior

unintended: undesired behavior

Property: if the level of battery 1 drops
below 15 units, the FDIR stops the system

© GMV – 29/09/2021 – MBSE’21

SDL Observer Properties

 Describe desired/undesired behaviour of the system in the form of state machine in OpenGEODE

 Monitor the system state, variables and I/O events

 Alter the system execution to guide the verification

 Desired behaviour is modelled by reaching a state catalogued success

 Undesired behaviour is modelled by reaching a state catalogued error

 Directly accessible in TASTE space-creator GUI

 Modelled with the available OpenGEODE editor, already extended for observers

Page 10

error NoGUIHalt;

Property: the FDIR stops GuidanceControl
if no status is received before 800ms

© GMV – 29/09/2021 – MBSE’21

Step 1

Step 2

Step 3

Step 4

Step 5

Step 3: Formal Verification

Page 11

© GMV – 29/09/2021 – MBSE’21

Step 3: Model-Checking

 Formal verification technique for system correctness
with respect to a defined set of properties

 Pros: exhaustive exploration of the model (potentially
guided by properties), fully automated, easy production of
counterexamples

 Cons: state space explosion problem

 Main principles:

 Model generation: building the system state space

 Model representation: data structures and methods to
store and explore efficiently the model

 Property interpretation: language for property
specification and the data structures and algorithms for
verifying them

 Analysis/Checking algorithms: algorithms and tools to
explore the model for verifying properties

 Tools: IF, UPPAAL, NuXMV, Spin, LTSmin

Page 12

© GMV – 29/09/2021 – MBSE’21

The IF Toolset

 Model-based development of real-time systems

 Features:

 Use of high level modelling and programming languages:
expressivity for faithful and natural modelling, cover
functional and extra-functional aspects, openness

 Expressiveness: direct mapping of concepts and
primitives of high modelling and programming languages
(asynchronous, synchronous, timed execution, buffered
interaction, shared memory, method call, etc.)

 Semantic tuning: when translating languages to express
semantic variation points, such as time semantics,
execution and interaction modes

 Model-based validation: combines static analysis and
model-based validation; integrates verification, testing,
simulation and debugging

 Applications: protocols, embedded systems,
asynchronous circuits, planning and scheduling

Resources: https://www-verimag.imag.fr/~async/IF

Page 13

Modeling and programming

languages (SDL, UML,

SCADE, Java …)

IF: Intermediate Format

based on a general and powerful

semantic model

Transition systems

simulation

test
verification1

verification2

verification3

state

explosion

optimization /

abstraction

translation

https://www-verimag.imag.fr/~async/IF

© GMV – 29/09/2021 – MBSE’21

Integration in TASTE: Transformations

Page 14

Obtains an IF model from
a TASTE design:
 ASN2IF for data view
 AADL2IF for interface

view, GUI functions
and C functions
behavior

 SDL2IF for SDL state
machines

Obtains an IF observer
from any TASTE modelled
property:
 OBS2IF for BSC and

SDL observers
 MSC2OBS for MSC to

SDL observers and
then using OBS2IF

Obtains a TASTE MSC
from the IF generated
diagnostic traces
(SCN2MSC)

© GMV – 29/09/2021 – MBSE’21

Integration in TASTE: Model-Checker Wizard

 Configuration tab:

 System properties: listing, creation, editing, deleting

 Sub-system on which to check the properties (if applicable)

 Environment subtyping (restricting the values the model-checker can produce as input of the model)

 One tab per available model-checker with their inherent options, calling and stopping the model-
checker

 E.g., IF model-checker with

 Maximum environment RI calls

 Number of diagnostic traces to be produced

 Number of states to explore

 Algorithm for exploration (bfs, dfs)

 Time limit for model-checking

 Etc.

Page 15

© GMV – 29/09/2021 – MBSE’21

Step 1

Step 2

Step 3

Step 4

Step 5

Steps 4 & 5: Model-Checking Results Assessment

Page 16

User activities

© GMV – 29/09/2021 – MBSE’21

Approach Validation: IXV case study

 Space vehicle to experiment on atmospheric re-entry with fully-automated sub-orbital flight

 Successful flight in Feb 2015

 Originally modelled in UML (Enterprise Architect) and having 77KLOC hand-written C code

 Two main functional behaviours fully modelled with TASTE:

 Flaps positioning sequence upon LV separation

 Flaps FDIR sequence and deactivation

 Properties defined (together with the expected verification result) and partially modelled in TASTE: 2 BSC,
6 MSC, and 2 OBS

 Examples: separation from launch vehicle and start of the flaps positioning sequence; flaps FDIR
sequence

Page 17

© GMV – 29/09/2021 – MBSE’21

Approach Validation: ERGO case study

 Scenario inspired by the Mars Sample Return of an autonomous planetary exploration rover able to pick
samples with a robotic arm, as well as taking images of scientific interest

 Originally developed with TASTE, C++ and BIP, around 2 MLOC (generated code included), and
demonstrated in Morocco’s desert in Nov-Dec 2018

 Case study consisting of the simplified functionalities of

 Telecommanding (E1) and goal commanding (E4)

 Simulation of traverses to specified poses, sample picking/dropping at different location, image taking of
the environment (snapshots or periodically), battery operations and FDIR

 Properties defined (together with the expected verification result) and partially modelled in TASTE : 3BSC,
7 MSC, 5 OBS

 Examples: there is no drop operation before a pick; FDIR works nominally

Page 18

DFKI’s SherpaTT in the
Moroccan desert for the ERGO

demonstration

© GMV – 29/09/2021 – MBSE’21

Current Status

 Tool partially implemented:

 Completed: ASN2IF, SDL2IF, MSC2OBS

 Ongoing: AADL2IF, TASTE project template and compilation

 Pending: OBS2IF, model-checking wizard (work in collaboration with N7 Space)

 Case studies fully developed in TASTE (properties included)

 Validation of the available components on the case studies

 Toolset and case studies available at https://gitrepos.estec.esa.int/taste/if-model-checking

Page 19

https://gitrepos.estec.esa.int/taste/if-model-checking

© GMV – 29/09/2021 - All rights reserved

Thank you!
idragomir@gmv.com

