
© GMV - 29/09/2021 - All rights reserved

Formal Verification of
Space Systems
Designed with TASTE

Iulia Dragomir

GMV

Model Based Space Systems and Software
Engineering (MBSE) 2021

September 29th, 2021

(Courtesy of ESA)

⊨


IF Toolset
model-checking

MoC4Space

© GMV – 29/09/2021 – MBSE’21

Outline

Introduction

Model-checking TASTE Designs

Approach Validation

Status

Page 2© GMV – 29/09/2021 – MBSE’21

© GMV – 29/09/2021 – MBSE’21

Introduction

 MBSE is an established development approach that enables:

 Designing large and complex systems with minimal effort and costs

 System design includes, among others, software: data types,

architecture, behaviour, deployment on processing units

 Obtaining correct-by-construction implementations/deployments wrt system requirements with the help
of (formal) V&V

 V&V includes an assortment of techniques such as design review, testing, simulation and model-
checking

 TASTE is an MBSE toolset that allows:

 Designing a real-time software system by means of consistent multi-view modelling

 Generating automatically the application’s executable(s)

 Checking the system correctness by static type analysis, real-time scheduling, simulation and testing

 Open topic: formal V&V of TASTE designs

 ESA MoC4Space project (2021-2022) addresses this shortcoming by integrating a formal V&V
approach based on model-checking in TASTE

Page 3

SherpaTT during the field tests of the ADE
demonstrator developed with TASTE

(Courtesy of DFKI)

© GMV – 29/09/2021 – MBSE’21

Formal Verification Approach

Page 4

Step 1: Design the desired
system with TASTE: data
view, interface view, SDL
state machines / C code

Step 2: Model the properties in
TASTE as a Boolean stop condition,
MSC or SDL observer

Step 3: Invoke the automated
verification technique (i.e.,
model-checker)

 Select property to check

 Select the design subset
on which the property
should hold

 Set model-checker
parameters (e.g.,
subtyping, time limit for
verification, number of
scenarios to obtain)

Step 4: Analyse the result obtained

 If the property is satisfied, the
workflow stops

 If the property is violated,
assess the diagnostic traces

Step 5: Analyse the diagnostic
traces one-by-one in the TASTE
environment and correct the
system design/modelled property if
applicable

© GMV – 29/09/2021 – MBSE’21

Step 1

Step 2

Step 3

Step 4

Step 5

Step 1: System Design with TASTE

Page 5

© GMV – 29/09/2021 – MBSE’21

TASTE

 Model-based development of heterogeneous, reactive,
discrete embedded systems

 Uses several modelling formalisms (ASN.1, AADL , SDL, etc.)
or programming languages (e.g., C)

 A TASTE design consists of:

 Data view (in ASN.1)

 Hierarchical interface views (software architecture
and behaviour)

 Communication is based on the notion of interfaces:
 Cyclic: execute a behaviour at a certain frequency
 Sporadic: whenever a request is received handle it
 Protected: handle the request and provide an

answer

 Behaviour is either modelled as SDL state machines
or implemented in C

 Deployment view

 Concurrency view computed from the above

Page 6

Data view

Excerpt from ERGO case
study TASTE design

Interface view

SDL behavior

Deployment
view

© GMV – 29/09/2021 – MBSE’21

Step 1

Step 2

Step 3

Step 4

Step 5

Step 2: Property Modelling

Page 7

3 types of properties:
 Boolean stop condition (BSC)
 Message Sequence Chart (MSC)
 Observer (in SDL)

© GMV – 29/09/2021 – MBSE’21

Boolean Stop Condition Properties

 Describe undesired behaviour of the system: stop if (condition)

 The condition is expressed over TASTE system states and variables

 The evaluation to true of the condition implies that the property is not satisfied, and hence the
design/property need to be corrected

 Directly accessible in TASTE space-creator GUI

 Modelled by the user as observers in OpenGEGODE

 The property skeleton is automatically generated

 The user specifies the condition in TASTE SDL observer

language (already available)

Page 8

Property: the level of battery 1 shall not
drop to the critical value of 10 units

© GMV – 29/09/2021 – MBSE’21

Message Sequence Chart Properties

 Describe desired/undesired sequences of I/O events between some of the functions defined in the
Interface View

 Properties available to the user

search [[from-start | nonstrict]]

((intended | unintended))

verify [[from-start]] intended

 Directly accessible in TASTE space-creator GUI

 Modelled with the available TASTE MSC editor,
property type specified via a comment

Page 9

search: find a system execution complying to the
MSC

verify: all system executions comply to the MSC

from-start: the execution is matched from the

beginning of interactions between the

represented functions

nonstrict: other interactions can happen
between the represented functions

intended: desired behavior

unintended: undesired behavior

Property: if the level of battery 1 drops
below 15 units, the FDIR stops the system

© GMV – 29/09/2021 – MBSE’21

SDL Observer Properties

 Describe desired/undesired behaviour of the system in the form of state machine in OpenGEODE

 Monitor the system state, variables and I/O events

 Alter the system execution to guide the verification

 Desired behaviour is modelled by reaching a state catalogued success

 Undesired behaviour is modelled by reaching a state catalogued error

 Directly accessible in TASTE space-creator GUI

 Modelled with the available OpenGEODE editor, already extended for observers

Page 10

error NoGUIHalt;

Property: the FDIR stops GuidanceControl
if no status is received before 800ms

© GMV – 29/09/2021 – MBSE’21

Step 1

Step 2

Step 3

Step 4

Step 5

Step 3: Formal Verification

Page 11

© GMV – 29/09/2021 – MBSE’21

Step 3: Model-Checking

 Formal verification technique for system correctness
with respect to a defined set of properties

 Pros: exhaustive exploration of the model (potentially
guided by properties), fully automated, easy production of
counterexamples

 Cons: state space explosion problem

 Main principles:

 Model generation: building the system state space

 Model representation: data structures and methods to
store and explore efficiently the model

 Property interpretation: language for property
specification and the data structures and algorithms for
verifying them

 Analysis/Checking algorithms: algorithms and tools to
explore the model for verifying properties

 Tools: IF, UPPAAL, NuXMV, Spin, LTSmin

Page 12

© GMV – 29/09/2021 – MBSE’21

The IF Toolset

 Model-based development of real-time systems

 Features:

 Use of high level modelling and programming languages:
expressivity for faithful and natural modelling, cover
functional and extra-functional aspects, openness

 Expressiveness: direct mapping of concepts and
primitives of high modelling and programming languages
(asynchronous, synchronous, timed execution, buffered
interaction, shared memory, method call, etc.)

 Semantic tuning: when translating languages to express
semantic variation points, such as time semantics,
execution and interaction modes

 Model-based validation: combines static analysis and
model-based validation; integrates verification, testing,
simulation and debugging

 Applications: protocols, embedded systems,
asynchronous circuits, planning and scheduling

Resources: https://www-verimag.imag.fr/~async/IF

Page 13

Modeling and programming

languages (SDL, UML,

SCADE, Java …)

IF: Intermediate Format

based on a general and powerful

semantic model

Transition systems

simulation

test
verification1

verification2

verification3

state

explosion

optimization /

abstraction

translation

https://www-verimag.imag.fr/~async/IF

© GMV – 29/09/2021 – MBSE’21

Integration in TASTE: Transformations

Page 14

Obtains an IF model from
a TASTE design:
 ASN2IF for data view
 AADL2IF for interface

view, GUI functions
and C functions
behavior

 SDL2IF for SDL state
machines

Obtains an IF observer
from any TASTE modelled
property:
 OBS2IF for BSC and

SDL observers
 MSC2OBS for MSC to

SDL observers and
then using OBS2IF

Obtains a TASTE MSC
from the IF generated
diagnostic traces
(SCN2MSC)

© GMV – 29/09/2021 – MBSE’21

Integration in TASTE: Model-Checker Wizard

 Configuration tab:

 System properties: listing, creation, editing, deleting

 Sub-system on which to check the properties (if applicable)

 Environment subtyping (restricting the values the model-checker can produce as input of the model)

 One tab per available model-checker with their inherent options, calling and stopping the model-
checker

 E.g., IF model-checker with

 Maximum environment RI calls

 Number of diagnostic traces to be produced

 Number of states to explore

 Algorithm for exploration (bfs, dfs)

 Time limit for model-checking

 Etc.

Page 15

© GMV – 29/09/2021 – MBSE’21

Step 1

Step 2

Step 3

Step 4

Step 5

Steps 4 & 5: Model-Checking Results Assessment

Page 16

User activities

© GMV – 29/09/2021 – MBSE’21

Approach Validation: IXV case study

 Space vehicle to experiment on atmospheric re-entry with fully-automated sub-orbital flight

 Successful flight in Feb 2015

 Originally modelled in UML (Enterprise Architect) and having 77KLOC hand-written C code

 Two main functional behaviours fully modelled with TASTE:

 Flaps positioning sequence upon LV separation

 Flaps FDIR sequence and deactivation

 Properties defined (together with the expected verification result) and partially modelled in TASTE: 2 BSC,
6 MSC, and 2 OBS

 Examples: separation from launch vehicle and start of the flaps positioning sequence; flaps FDIR
sequence

Page 17

© GMV – 29/09/2021 – MBSE’21

Approach Validation: ERGO case study

 Scenario inspired by the Mars Sample Return of an autonomous planetary exploration rover able to pick
samples with a robotic arm, as well as taking images of scientific interest

 Originally developed with TASTE, C++ and BIP, around 2 MLOC (generated code included), and
demonstrated in Morocco’s desert in Nov-Dec 2018

 Case study consisting of the simplified functionalities of

 Telecommanding (E1) and goal commanding (E4)

 Simulation of traverses to specified poses, sample picking/dropping at different location, image taking of
the environment (snapshots or periodically), battery operations and FDIR

 Properties defined (together with the expected verification result) and partially modelled in TASTE : 3BSC,
7 MSC, 5 OBS

 Examples: there is no drop operation before a pick; FDIR works nominally

Page 18

DFKI’s SherpaTT in the
Moroccan desert for the ERGO

demonstration

© GMV – 29/09/2021 – MBSE’21

Current Status

 Tool partially implemented:

 Completed: ASN2IF, SDL2IF, MSC2OBS

 Ongoing: AADL2IF, TASTE project template and compilation

 Pending: OBS2IF, model-checking wizard (work in collaboration with N7 Space)

 Case studies fully developed in TASTE (properties included)

 Validation of the available components on the case studies

 Toolset and case studies available at https://gitrepos.estec.esa.int/taste/if-model-checking

Page 19

https://gitrepos.estec.esa.int/taste/if-model-checking

© GMV – 29/09/2021 - All rights reserved

Thank you!
idragomir@gmv.com

