Formal Verification of
Space Systems
Designed with TASTE

Iulia Dragomir
GMV

Model Based Space Systems and Software
Engineering (MBSE) 2021

September 29th, 2021

© GMV - 29/09/2021 - All rights reserved

MoC4Space

M IF Toolset

e
(Courtesy of ESA) (s (oo )

®
I
L en Informatique de Toulou:
erimac CNRS - INP - UT3 - UT1 - UT2J
INNOVATING SOLUTIONS

model-checking .=

nstitut de Recherche
i ique d

se



Outline

Introduction
Model-checking TASTE Designs
Approach Validation

Status

© GMV - 29/09/2021 - MBSE"21

Page 2



Introduction _

» MBSE is an established development approach that enables: e |
Designing large and complex systems with minimal effort and costs : ———— e
. . SherpaTT during the field tests of the ADE
» System design includes, among others, software: data types, demonstrator developed with TASTE
. . . . (Courtesy of DFKI)
architecture, behaviour, deployment on processing units

Obtaining correct-by-construction implementations/deployments wrt system requirements with the help
of (formal) V&V

» V&V includes an assortment of techniques such as design review, testing, simulation and model-
checking
» TASTE is an MBSE toolset that allows:
= Designing a real-time software system by means of consistent multi-view modelling
= Generating automatically the application’s executable(s)
= Checking the system correctness by static type analysis, real-time scheduling, simulation and testing
= Open topic: formal V&V of TASTE designs

> ESA MoC4Space project (2021-2022) addresses this shortcoming by integrating a formal V&V
approach based on model-checking in TASTE

© GMV - 29/09/2021 - MBSE"21 Page 3 anwv



Formal Verification Approach

Start

Step 1: Design the desired
system with TASTE: data
view, interface view, SDL
state machines / C code

A 4

Design system in
TASTE

Step 2: Model the properties in
TASTE as a Boolean stop condition,
MSC or SDL observer

Specify behavioural
system property in
TASTE

S

Step 3: Invoke the automated
verification technique (i.e.,

model-checker)
o [Model-check property i
» Select property to check > [ on the system Step 4: Analyse the result obtained

. Select_the design subset = If the property is satisfied, the
on which the property workflow stops

should hold N = If the property is violated,

Property satisfied

» Set model-checker : assess the diagnostic traces
diagnostic
parameters (e.g., stop (@)
subtyping, time limit for

Step 5: Analyse the diagnostic
traces one-by-one in the TASTE
environment and correct the
system design/modelled property if
Nok] N [OK] applicable

verification, number of [NOK]
scenarios to obtain)

a

Assess diagnostic
3 trace

Valid behaviour

Another diagnostic
trace available

© GMV - 29/09/2021 - MBSE"21 Page 4 9 v



Step 1: System Design with TASTE

act Tool workflow J
start @)

Design system in

TASTE

Step 1

Step 2

Specify behavioural
system property in
TASTE

Step 3

Model-check property
on the system

Property satisfied

Stop o

[NOK] Assess diagnostic

trace

Valid behaviour

[NOK] N [OK]

Another diagnostic
trace available

© GMV - 29/09/2021 - MBSE"21 Page 5



Position ::= Vector3d Excerpt from ERGO case

TAST E Posezn i+ SEOUECE { study TASTE design

orient T-Double Data VieW
}

-- Definition of Agent-Functional types

CameraPred ::= EMUMERATED { camera-idle, camera-takingpicture, camera-fault, camera-cancel }

» Model-based development of heterogeneous, reactive, e e | ooy Tsciept [econera e, scientificeenerazscaming, scie
discrete embedded systems S

» Uses several modelling formalisms (ASN.1, AADL , SDL, etc.)
or programming languages (e.g., C)

= A TASTE design consists of:

= Data view (in ASN.1) L ——

» Hierarchical interface views (software architecture
and behaviour)

» Communication is based on the notion of interfaces:
» Cyclic: execute a behaviour at a certain frequency
» Sporadic: whenever a request is received handle it
» Protected: handle the request and provide an

Interface view

CAM FOIR CAM FDIR

7 TIFICCAM FOIR | SCIENTIFICCAM FOIR
gent

1 ~q

HALT CAMERA HALT CAMERA

answer o UGl L o~ N
= Behaviour is either modelled as SDL state machines
or implemented in C
- Deployment view Deployment
= Concurrency view computed from the above P g view

SDL behavior

guiGoalFinished

© GMV - 29/09/2021 - MBSE"21 Page 6 anwv



Step 2: Property Modelling

3 types of properties:
= Boolean stop condition (BSC)

» Message Sequence Chart (MSC)
» Observer (in SDL)

© GMV - 29/09/2021 - MBSE"21

act Tool workflow J

Start

Step 1

Design system in

TASTE

Step 2

Specify behavioural
system property in
TASTE

Step 3

Model-check property
on the system

Property satisfied

Stop o

[NOK] Assess diagnostic
: trace

Valid behaviour

[NOK] N [OK]

Another diagnostic
trace available

Page 7




Boolean Stop Condition Properties

= Describe undesired behaviour of the system: stop if (condition)
The condition is expressed over TASTE system states and variables

The evaluation to true of the condition implies that the property is not satisfied, and hence the
design/property need to be corrected

» Directly accessible in TASTE space-creator GUI
*» Modelled by the user as observers in OpenGEGODE
= The property skeleton is automatically generated
» The user specifies the condition in TASTE SDL observer writeln (observer init)
language (already available) s -
nonitor event Observable_Event;
lerror unexpected;
st.BatterySystem.Batteryl.
batstatus.level < 10
,

Property: the level of battery 1 shall not
drop to the critical value of 10 units

© GMV - 29/09/2021 - MBSE"21 Page 8 anwv



Message Sequence Chart Properties

= Describe desired/undesired sequences of I/O events between some of the functions defined in the

Interface View . . .
search: find a system execution complying to the

» Properties available to the user MSC
search [[from-start | nonstrict]] verify: all system executions comply to the MSC
(( intended | unintended )) from-start: the execution is matched from the
verify [[from-start]] intended beginning of interactions between the
» Directly accessible in TASTE space-creator GUI represented functions
* Modelled with the available TASTE MSC editor, nonstrict: other interactions can happen
property type specified via a comment between the represented functions

intended: desired behavior
Batteryl FDIR GuidanceControl - . .
:mpemme: unintended: undesired behavior
verify intended

HALT_GUI(low-bat)

| POWER_LEVEL FDIR( 14.9&_

|
I ——— I

Property: if the level of battery 1 drops
below 15 units, the FDIR stops the system

© GMV - 29/09/2021 - MBSE"21 Page 9 anwv



SDL Observer Properties

= Describe desired/undesired behaviour of the system in the form of state machine in OpenGEODE
= Monitor the system state, variables and I/O events
= Alter the system execution to guide the verification
» Desired behaviour is modelled by reaching a state catalogued success
= Undesired behaviour is modelled by reaching a state catalogued error

» Directly accessible in TASTE space-creator GUI
» Modelled with the available OpenGEODE editor, already extended for observers

— Text area for declarations and comments -

monitor st System_State;

monitor event Observable_Event; g
Wait

Timert;
[ T

error NoGUIHalt; anut GUI_WDOG to FDIR> <1utput HALT_GUI from FDIR to GuidanceContro> -
set_timer(800, t) I set_timer(800, t) I NoGUIHalt

Property: the FDIR stops GuidanceControl
if no status is received before 800ms

© GMV - 29/09/2021 - MBSE"21 Page 10



Step 3: Formal Verification

© GMV - 29/09/2021 - MBSE"21

act Tool workflow J

Start

Step 1

Design system in

TASTE

Step 2

Specify behavioural
system property in
TASTE

Step 3

Model-check property

on the system
I

Property satisfied

Stop o

[NOK] Assess diagnostic
trace

Valid behaviour

[NOK] N [OK]

Another diagnostic
trace available

Page 11




Step 3: Model-Checking

* Formal verification technique for system correctness
with respect to a defined set of properties Somiontion o
= Pros: exhaustive exploration of the model (potentially o

S —

guided by properties), fully automated, easy production of
counterexamples Model (| Model Property

Representation Generation Interpretation

» Cons: state space explosion problem

g i g

* Main principles: Anlysis / Chock]
nalysis ecking

= Model generation: building the system state space Algorithms
» Model representation: data structures and methods to

store and explore efficiently the model

»  Property interpretation: language for property T ——
specification and the data structures and algorithms for berd/ctJ M
verifying them

» Analysis/Checking algorithms: algorithms and tools to
explore the model for verifying properties

= Tools: IF, UPPAAL, NuXMV, Spin, LTSmin

© GMV - 29/09/2021 - MBSE"21 Page 12



The IF Toolset

» Model-based development of real-time systems

» Features: Modeling and programming
) ) ) | SDL, UML,
» Use of high level modelling and programming languages: anggi%eé (Java )
expressivity for faithful and natural modelling, cover ’
functional and extra-functional aspects, openness translation 1
= Expressiveness: direct mapping of concepts and

primitives of high modelling and programming languages
(asynchronous, synchronous, timed execution, buffered
interaction, shared memory, method call, etc.)

= Semantic tuning: when translating languages to express
semantic variation points, such as time semantics,
execution and interaction modes

= Model-based validation: combines static analysis and
model-based validation; integrates verification, testing, —
simulation and debugging SUIENE

optimization /
abstraction

/ verificationl

test e -
IS | verification2

verification3

= Applications: protocols, embedded systems,
asynchronous circuits, planning and scheduling

Resources: https://www-verimag.imag.fr/~async/IF
© GMV - 29/09/2021 - MBSE"21 Page 13 anwv



https://www-verimag.imag.fr/~async/IF

Integration in TASTE: Transformations

Obtains an IF model from |,

a TASTE design:

= ASNZ2IF for data view

= AADL2IF for interface
view, GUI functions
and C functions
behavior

» SDLZ2IF for SDL state
machines

Obtains an IF observer

from any TASTE modelled

v

property:

= OBS2IF for BSC and
SDL observers

= MSC20BS for MSC to
SDL observers and
then using OBS2IF

© GMV - 29/09/2021 - MBSE"21

e

IF Model-Checker

-

I

!
Yes/No Verdict

!

Diagnostic Trace(s)

TASTE System ' TASTE System | TASTE System
Specification . Properties : Diagnostics
‘/l/_ | l == ‘T/—_
\ Model . .
rovstormatin | | e, || Modekchecker || AR
(ASN2IF, AADL2IF, Wizard

SDL2IF) (OBS2IF, MSC20BS) (SCN2MSC) \
IF Model / IF Observer(s) Obtains a TASTE MSC

diagnostic traces
(SCN2MSCQC)

Page 14

from the IF generated



Integration in TASTE: Model-Checker Wizard

= Configuration tab:

System properties: listing, creation, editing, deleting

Sub-system on which to check the properties (if applicable)

Environment subtyping (restricting the values the model-checker can produce as input of the model)

= One tab per available model-checker with their inherent options, calling and stopping the model-

Ch eCker Iil Configure and call Model Checker ®

u E.g., IF mOdel'CheCker W|th | Configuration 1 Native model-checker 1 IF model-checker ] SPIN model-checker ]

» Maximum environment RI calls rodlera s e e @z

. A Max. number of environment RI calls
= Number of diagnostic traces to be produced | = " """~
= Number of states to explore Max. numberof states

R . Exploration algorithm DES

= Algorithm for exploration (bfs, dfs) rime imitsc)
» Time limit for model-checking
u Etc_ Call engine

. ...engine stdout fing [ ...
...engine stdout fine 2... [ 2

_-enging_stdout fine 3 ... MLE Epimes Resis

W]

Scenario(s) found!

Stop engine 9
. Open folder

© GMV - 29/09/2021 - MBSE"21 Page 15 anwv



Steps 4 & 5: Model-Checking Results Assessment

act Tool workflow J

Start

Step 1

Design system in
TASTE

Step 2

Specify behavioural
system property in
TASTE

Step 3

Model-check property
on the system
|

Property satisfied

Stop o
Stepl 5 User activities

Assess diagnostic
3 trace

Valid behaviour

[NOK]

[NOK] N [OK]

Another diagnostic
trace available

© GMV - 29/09/2021 - MBSE"21 Page 16



Approach Validation: IXV case study

= Space vehicle to experiment on atmospheric re-entry with fully-automated sub-orbital flight
Successful flight in Feb 2015
Originally modelled in UML (Enterprise Architect) and having 77KLOC hand-written C code

= Two main functional behaviours fully modelled with TASTE:
*» Flaps positioning sequence upon LV separation
» Flaps FDIR sequence and deactivation

Properties defined (together with the expected verification result) and partially modelled in TASTE: 2 BSC,
6 MSC, and 2 OBS

= Examples: separation from launch vehicle and start of the flaps positioning sequence; flaps FDIR
Seq u e n Ce SquRBITAL PHASE

-

B S | B .
— 25 i -

i "*T: = 7 = ———

DESCENT &

RECOVERY PHASES

© GMV - 29/09/2021 - MBSE"21



Approach Validation: ERGO case study

= Scenario inspired by the Mars Sample Return of an autonomous planetary exploration rover able to pick
samples with a robotic arm, as well as taking images of scientific interest

= Originally developed with TASTE, C++ and BIP, around 2 MLOC (generated code included), and
demonstrated in Morocco’s desert in Nov-Dec 2018
» Case study consisting of the simplified functionalities of
= Telecommanding (E1) and goal commanding (E4)
= Simulation of traverses to specified poses, sample picking/dropping at different location, image taking of
the environment (snapshots or periodically), battery operations and FDIR
= Properties defined (together with the expected verification result) and partially modelled in TASTE : 3BSC,
7 MSC, 5 OBS
= Examples: there is no drop operation before a pick; FDIR works nominally

DFKI's SherpaTT in the
Moroccan desert for the ERGO
demonstration

© GMV - 29/09/2021 - MBSE"21 Page 18 E— anwv



Current Status

Tool partially implemented:
= Completed: ASN2IF, SDL2IF, MSC20BS
= Ongoing: AADL2IF, TASTE project template and compilation
» Pending: OBS2IF, model-checking wizard (work in collaboration with N7 Space)

Case studies fully developed in TASTE (properties included)
Validation of the available components on the case studies
Toolset and case studies available at https://qgitrepos.estec.esa.int/taste/if-model-checking

© GMV - 29/09/2021 - MBSE"21 Page 19


https://gitrepos.estec.esa.int/taste/if-model-checking

Thank you!

idragomir@gmv.com

Institut de Recherche
en Informatique de Toulouse

erimas CNRS - INP - UT3 - UT1 - UT2J

© GMV - 29/09/2021 - All rights reserved INNOVATING SOLUTIONS



