
MBSE 2021, 29-30 September 2021 1

COMPASTA:
Integration of the COMPASS

and TASTE toolsets

MBSE 2021

Marco Bozzano, Roberto Cavada, Alessandro Cimatti, Alberto Griggio,
Massimo Nazaria, Stefano Tonetta

Fondazione Bruno Kessler, Trento Italy

MBSE 2021, 29-30 September 2021 2

The COMPASTA Study

 The Study at a glance
• Acronym: COMPASTA

• Type: Early Technology Development

• Funded as an idea in OSIP (MBSE Campaign)

• Contractor: Fondazione Bruno Kessler (FBK), Trento, Italy

• Duration: 18 months (April 2021 – October 2022)

 FBK
• Research Foundation (over 400 researchers)

• Embedded Systems Unit: about 30 people

MBSE 2021, 29-30 September 2021 3

Background: the COMPASS tool
• Requirements specification
• Requirements analysis
• Contract-based design
• Functional verification
• Fault injection
• Safety assessment and
• dependability: FTA, FMEA
• FDIR Analysis

sy
st

em
 s

p
ec

if
ic

at
io

n

AADL

behavior specification

SLIM SLIM SLIMSLIM

 Tool for model-based system/SW
co-engineering

 Developed in a series of ESA
studies (2008-2016)
• Latest release in 2019

 Input language is a variant of AADL
(called SLIM)

 Functionality: formal design,
formal V&V

 Based on model checking

MBSE 2021, 29-30 September 2021 4

Background: the TASTE tool
• Many languages
• Push-button compilers for

deployment
• Graphical editor for AADL
• Graphical editor for SDL
• High integrability

AADL

Deployment Specification

 Tool for model-based design of
embedded, real- time systems

 Created by initiative of ESA in 2008

 Several modeling languages

•ASN.1, AADL, SDL, Simulink, etc.

 Ecosystem: graphical editors,
visualizers, code generators

MBSE 2021, 29-30 September 2021 5

Objectives of COMPASTA

 Integration of the existing COMPASS and TASTE toolchains

 Goal: a comprehensive, end-to-end toolchain that covers system
development, early verification and validation, safety assessment and
FDIR, system deployment
• COMPASS used to build a formal model of the system architecture, the HW

components and their faults, and to validate the formal model

• TASTE used to model the SW components, for code generation and deployment,
and to test the final implementation

 Goal: foster the adoption and the industrial exploitation of the
COMPASS+TASTE integrated toolchain

MBSE 2021, 29-30 September 2021 6

TASTE+COMPASS: Technical approach

Definition of common input languages for model-based specifications
• AADL, SDL

 Integration of COMPASS back-ends for V&V into TASTE
• COMPASS back-ends can be called from TASTE to perform formal V&V

• Lightweight integration into the TASTE GUI, and script-based interaction

 Encoding of AADL and SDL specifications into the language of the back-ends

Automated formal analyses using the back-ends

 Extended editors and visualizers

MBSE 2021, 29-30 September 2021 7

TASTE + COMPASS Workflow

AADL

D
ev

el
o

p
m

en
t

Requirements

Architectural
design

Behavior
specification

Deployment
specification

Running
system

Early V&V

Requirements

analysis

Contract-
based design

Model
Checking

Safety analysis

Fault
injection

FTA/FMEA FDIRDeployment Specification

MBSE 2021, 29-30 September 2021 8

A comparative view of COMPASS and TASTE functionality
Development phase COMPASS functionality TASTE functionality

Requirements specification Specification of properties and requirements

Requirements analysis

Architectural design Contract-based design and refinement

Specification of system architecture (AADL) Specification of system architecture (AADL)

Behavioral specification Specification of the behavior of HW components

(extended version of AADL)

Specification of the behavior of SW components

(SDL or other language)

Formal verification of functional behavior

Specification of HW faults

Fault injection/ Model extension

Formal verification of functional behavior (in

presence of faults)

Fault Tolerance evaluation and dependability

assessment

Deployment SW implementation

Specification of the deployment on the target HW

Code generation

Trace validation for testing Testing of the implementation

MBSE 2021, 29-30 September 2021 9

TASTE + COMPASS Workflow: An Example
 Redundant power system

• Generators charging batteries
• Batteries powering loads via circuit

breakers

 Redundancies
• Redundant lines between

generators and batteries and
between batteries and loads

 Faults
• Generators stuck at off, batteries

stuck at off, circuit breakers stuck at
open/closed

 Requirements
• All loads must be powered
• A load must be powered by at most

one battery at any given time,
otherwise it gets broken

 FDIR components
• Manage re-configurations

MBSE 2021, 29-30 September 2021 10

TASTE + COMPASS Workflow: An Example

Modeling the system architecture (AADL)
• Use the graphical editor available in the TASTE interface view

system Battery
features

voltage_in: in data port [0..12];
voltage_out: out data port [0..12];
cmd: in data port enum(off, on);
…

end Battery;

MBSE 2021, 29-30 September 2021 11

TASTE + COMPASS Workflow: An Example

Modeling the behavior of HW components (SLIM)
• Declare a function block of type SLIM, and use an external textual editor (SDE)

system implementation Battery.Imp
subcomponents

delay: data clock;
voltage_internal: data [0..12];

states
on: initial state while (delay <= 1);
off: state while (delay <= 1);

transitions
on -[when delay >= 1 and cmd = enum:off
then delay := 0; voltage_out := 0]-> off;
…

end Battery.Imp;

MBSE 2021, 29-30 September 2021 12

TASTE + COMPASS Workflow: An Example

Modeling the behavior of SW components (SDL)
• Use the OpenGEODE

graphical editor
available in TASTE

MBSE 2021, 29-30 September 2021 13

TASTE + COMPASS Workflow: An Example

Name Property

All loads powered Always (ld1.is_powered and ld2.is_powered)

At least one load powered Always (ld1.is_powered or ld2.is_powered)

No loads broken Never (ld1.is_broken or ld2.is_broken)

Component Name Assumption Guarantee

Generator power true always(voltage_out >= 10)

Battery power always(voltage_in >= 10) always(voltage_out >= 10)

CircuitBreaker cmd_closed true always(cmd = enum:closed

-> status = enum:closed)

cmd_open true always(cmd = enum:open

-> status = enum:open)

FDIRGen Power always(voltage_in_1 >= 10 or

voltage_in_2 >= 10)

always(voltage_out_1 >= 10 and

voltage_out_2 >= 10)

FDIRCb cmd always(voltage_in_1 >= 10 and

voltage_in_2 >= 10)

always(cmd_bat1 = enum:on and

cmd_bat2 = enum:on and

cmd_cb1 = enum:closed and

cmd_cb2 = enum:closed and

cmd_cb3 = enum:open)

 Specification of properties and contracts

MBSE 2021, 29-30 September 2021 14

 Specification of properties and contracts
• Open an external textual editor from TASTE

TASTE + COMPASS Workflow: An Example

Name Assumption Guarantee

power true always(voltage_out>=10)

MBSE 2021, 29-30 September 2021 15

error model PermanentFailure
features
ok: activation state;
dead: error state;

end PermanentFailure;

error model implementation
PermanentFailure.Imp
events
fault: error event;

transitions
ok -[fault]-> dead;

end PermanentFailure.Imp;

TASTE + COMPASS Workflow: An Example

 Fault injection
• An example: permanent fault associated to generators

Fault injection

Dead

OK

fault

system Generator
features
voltage_out: out data port [0..12];

end Generator;

system implementation Generator.Imp
properties
ErrorModel => classifier(PermanentFailure.Imp);
FaultEffects => ([State=>"dead";
Target=>reference(voltage_out); Effect=>"0";]);

end Generator.Imp;

MBSE 2021, 29-30 September 2021 16

TASTE + COMPASS Workflow: An Example

 Formal verification
• Call the formal verification functionality from TASTE

MBSE 2021, 29-30 September 2021 17

TASTE + COMPASS Workflow: An Example

 Formal verification
• Functional verification

• Dependability and safety
assessment (FTA/ FMEA)

• FDIR analysis

Use the COMPASS back-ends
to generate the results

MBSE 2021, 29-30 September 2021 18

TASTE + COMPASS Workflow: An Example

 Code generation, deployment and testing
• Use the TASTE functionality

MBSE 2021, 29-30 September 2021 19

TASTE + COMPASS Workflow: Summary

 COMPASS and TASTE provide complementary functionality

 COMPASS functionality used to:
• Model the system architecture

• Model the HW components and their faults

• Validate a formal model of the system

 TASTE functionality used to:
• Model the SW components

• Code generation

• Deployment

• Testing of the deployed system

MBSE 2021, 29-30 September 2021 20

Conclusions

 The goal of COMPASTA is to integrate COMPASS functionality into TASTE, and
produce a comprehensive, end-to-end toolchain for system design, formal
verification and validation, and deployment

 The Study is ongoing – final results are expected by the end of 2022

