

Validation, characterization and irradiation testing of the DARE65T platform

<u>Marcel van de Burgwal</u>, El Hafed Boufouss, Bastien Vignon, Laurent Berti, Michael Kakoulin Imec.IC-link ASIC Design

DARE65 RAD HARD DESIGN PLATFORM

ເກາຍເ

Sponsored by:

European Space Agency

ເງຍ

ESA DARE65 project phases

Phases and tasks

amicsa

- Commercial 65 nm LP process
 - Deep Nwell option
 - MOM or MIM capacitors
 - Dual gate oxide process 1.2V (core) / 2.5V(IO)
 - Multiple VT (high VT, standard VT, low VT)
 - 6 or 9 Cu metal layers
 - RDL available for Flip-chip (Al metal layer)

Operating conditions & Hardness target

Parameter	Min	Тур	Max
Core voltage,V	1.08	1.2	1.32
IO voltage,V	2.25	2.5	2.75
Temperature, ⁰ C	-40	25	125
TID, krad	100	300	
SEL, MeV.cm ² /mg	70		

Target SEU, SET hardness levels

Parameter	Min	Тур	Max
High, MeV.cm ² /mg	65		
Medium, MeV.cm ² /mg	40		
Low, MeV.cm ² /mg	25		

Actual levels to be confirmed after irradiation testing

ESA DARE65 project phases

Phases and tasks

amicsa 20

Standard cell library DARE65T_CORE

- Multi-VT (HVt, SVt, LVt) support
- digital/analogue-on-top & design flow support
- I2 track library 0,2 um pitch
- Raw gate density ~344 kGates/mm²
- SET & SEU hardened cells for clock & reset tree
- SET hardened combinational cells
- SEU hardened flipflops and latches (DICE)

Туре	#
Non-SET hardened combinational cells	52
SET hardened combinational cells – Low	7
SET hardened combinational cells – Medium	7
SET hardened combinational cells – High	7
Non-SET hardened sequential cells	9
SEU hardened sequential cells	5
ANTENNA cells	I
TIEH and TIEL	2
Non-SEU hardened clock gating cells	I
SEU hardened clock gating cells	3
Filler cells	8
Total	102

IO libraries (I)

Library	Main features
DARE65T_IO	Uni- and bidirectional LVCMOS cells
	cold-spare functionality
	slew rate control
	 programmable drive strength, pull up/down
	 supports 1.8/2.5V & 3.3 V supply voltage
	• ESD: 2 kV HBM
	Breaker, filler, corner cells
	• flip-chip support (RDL)
DARE65T_LVDS	Transmitter and receiver IO cells
	 based on 2.5 V overdrive 3.3V transistors
	 2.5 and 3.3 V voltage supply
	• up to 400 Mbps (200 MHz)

Library	Main features
DARE65T_SSTL	SSTL18 cells - single ended and differential receiver and transmitter
	• 1.8V \pm 5% supply voltage
	• DDR2-800 support
	SSTL15 cells - single ended and differential receiver and transmitter
	• 1.5V \pm 5% supply voltage
	Impedance calibration support
	DDR3-800 support

Analogue IPs

Library	Main features
DARE65T_PLL	25-100 MHz reference frequency
	6.25-1200 MHz output frequency
	Supply voltage 1.2V
DARE65T_IVREF	 I.2V and 2.5 supply voltages
	0.6V voltage reference output
	I0uA output current reference output
	 Accuracy (before trimming) ± 2,5 %
DARE65T_ADC	10 bit resolution
	Integrated temperature sensor
	Supply voltage 1.2V
DARE65T_IDAC	12-bit Current DAC at 10MHz
	Supply voltage 1.2V

ESA DARE65 project phases

Phases and tasks

amicsa20

- 65nm technology evaluation ("TV_DEV")
 - Characterize devices
 - Evaluate technology TID robustness
- DARE65 library evaluation ("TV_LIB")
 - Functional verification of library cells
 - Electrical characterization of all IO and analog IPs
 - Irradiation evaluation of all library cells
 - TID: characterize up to 300krad (Co⁶⁰)
 - SEE: up to 65 MeVcm²/mg through SEL testing, SEU testing and SET testing

ເງຍອ

TV_DEV

Technology characterization under TID

- Outer IO ring bonded directly to
 - Transistor arrays
 - Bipolar transistor arrays
 - Diodes
 - Resistors
 - Capacitors
- Left/right side: cells with no ESD protections
 - Allows for accurate leakage measurements
- Top/bottom side: cells with ESD protections
 - Backup scenario if non-ESD protected cells are damaged due to handling during debugging

TV_DEV

Test hardware – characterization board and TID board

TV_LIB Design

unec

- Inner IO ring bonded to Analog-on-Top design
- All DARE65T IPs instantiated at least once
- Dedicated SEE test structure per IP
- All digital IP interfaces are memory mapped in an SPI control interface
 - For debugging, characterization and realtime readout during SEE

TV_LIB

Characterization test setup and approach

- Tester prepares analog inputs
- Tester executes digital test patterns (SPI transactions) and matches output values with expected values
- If miscompare: report failing cycle
- Map failing cycle to corresponding SPI transaction and identify failing bits in transaction
- Map bit of accessed register to actual IP pin
- During pattern execution: perform analog measurements (supply consumption, analog output values, leakage, ...)

amicsa 2022

ເກາຍເ

TV_LIB SEE test setup and approach

- Similar to characterization:
 - Tester initializes device with proper SPI sequence (through pattern)
 - Beam on
 - Tester reads specific registers every 10ms to sample SET/SEU data and reports failing cycles
 - Beam off
 - Tester reads all internal state and reports failing cycles
 - Offline: map failing cycles to failing IP pins (see previous slide)

TV_LIB

Test hardware – characterization board and TID board

TV_LIB Test hardware – SEE board

Test results TV_LIB SEE testing

- 3 samples tested
- 4 ions and tilting to get 6 LET levels per sample (7 to 65MeV)
- 5 configurations per LET level per sample:
 - 3 configurations for digital cells (DFF, XICG, combinatorial cells)
 - 2 configurations for analog cells (IO, ADC, IDAC, IVREF, PLL)
- ~90 runs in 3 days (48 hrs beamtime)
- => massive amount of data to process

Test results

TV_LIB characterization

- Extensive characterization program
 - More than 60k measurements to characterize all IPs
 - ~20 (P)VT conditions to be characterized
 - P = fixed (MPW)
 - V = [Vmin, Vtyp, Vmax]
 - T = [-40, -20, 0, 25, 50, 75, 100, 125]
 - I0-20 devices to be characterized in June
 - => huge amount of data expected

- DARE65 libraries have been developed, validated and irradiated
- Irradiation results will be available before Q3
- DARE65 datasheets and irradiation results can be accessed under NDA

ເງຍ

Future work

Other IPs

Library	Main features
DARE65T_DPRAM	True DPRAM (both ports support read and write)
	• Available as hard macro blocks in 5 configurations (512x40 up to 8192x40)
	• Up to 350MHz
DARE65T_SPRAM compiler	• Highly configurable: 32 up to 32k rows, 8 up to 64 columns, byte lane WE control, column multiplexing
	• Optional guard ring generation (e.g. power supply isolation for Iddq testing without impacting rad hardness)
DARE65T_DDRPHY	DDR3.0 PHY with up to 1200 Mbit/s data rate
	Embedded DLL and impedance calibration support
	• Up to 96 bit data, up to 8 ranks
	Integrated bump grid
	Fully compatible with Cobham Gaisler FTADDR DDR2/3 controller

- SRAMs are under evaluation in a second test vehicle
- DDRPHY is under development during DARE65 Phase2:"Complex IC design, manufacturing and test"

- Platform launch once SRAM irradiation results available (early 2023)
- Early access may be requested
 - <u>https://dare.imec-int.com/en/home</u>

Thanks for attending

Questions?

embracing a better life