

Cenaero

Demise of CFRP materials in atmospheric entry conditions

Aerothermodynamics and Design for Demise (ATD3) Workshop 2nd December 2021

P. Schrooyen, A. Turchi, B. Helber, O. Chazot, T.E. Magin, L. Walpot Contact: <u>pierre.schrooyen@cenaero.be</u>

High fidelity simulations of degrading materials subjected to high enthalpy flows

Cenae

Reproduction of CFRP demise in Plasmatron conditions

Models

Implementation in state-ofthe-art Mutation++ library and linked with Argo code

Experiments

Plasmatron facility to reproduce high enthalpy conditions faced during debris re-entry

Numerical simulations

High-order Argo code to reproduce experiments and to predict thermal response of degrading materials

Numerical methods to simulate the response of porous ablative materials

© 2020 Cenaero – All rights reserved

Coupled methods to investigate gas-surface interaction

Unified method to treat compressible flow and porous material response

ATD3 Workshop 2021

High order Discontinuous Galerkin is advantageous for accuracy and efficiency but lacks of robustness

- Advantages
 - Ability to handle complex geometries
 - Guaranteed order of convergence p+1 on unstructured meshes
 - No degradation near size jumps/walls
 - Good dispersion-dissipation properties
 - hp-adaptation
 - Hybrid structured/unstructured mesh
 - Shared operations (parametric)
 - Local operations
 - Low transfer work and operation hiding possible (parallel efficiency)
- Drawbacks
 - Duplication of the degrees of freedom on the element boundaries (costly)
 - Sensitive to under-resolved features

Argo is a multiphysics high resolution and high performance platform based on DGM

© 2020 Cenaero – All rights reserved

Weak coupling for simulating melting material

ATD3 Workshop 2021

Strong coupling approach to model flow and porous medium in the same domain of computation

Gac

$$\frac{\frac{\partial \epsilon_g \langle \rho_i \rangle_g}{\partial t} + \nabla \cdot (\epsilon_g \langle \rho_i \rangle_g \langle u \rangle_g)}{\nabla \cdot \left(\epsilon_g \frac{D_{i,m}}{\eta} \langle \rho_i \rangle_g \frac{W_i}{W} \nabla X_i\right) + \langle \dot{\omega} \rangle + \Pi_g}$$

Solid (fibers + char + resin)

$$\frac{\partial \epsilon_s \langle \rho_s \rangle_s}{\partial t} = \langle \dot{\omega}^{het} \rangle - \Pi_g$$

Momentum :

$$\begin{split} \frac{\partial(\epsilon_g \langle \rho u \rangle_g)}{\partial t} + \nabla \cdot (\epsilon_g \langle \rho \rangle_g \langle u \rangle_g \langle u \rangle_g) = \\ -\epsilon_g \nabla \langle P \rangle_g + \nabla \cdot \langle \tau \rangle + F \end{split}$$

Energy :

$$\frac{\partial \langle \rho E_{tot} \rangle}{\partial t} + \nabla \cdot (\epsilon_g \langle \rho \rangle_g \langle H \rangle_g \langle u \rangle_g)$$
$$= \nabla \cdot (\lambda_{eff} \nabla T) + \nabla \cdot (\langle \tau \cdot u \rangle)$$

Representative sample and conditions to reproduce atmospheric entry of AVUUM tank

Demise of scaled sample (cylinder configuration) in Plasmatron conditions accounting for tumbling motion

Heat flux	Pressure	time
0.5 MW/m ²	55mbar	141s

- Uniform heating in stagnation region
- Pyrolysis of the epoxy resin
- · Barely any ablation in those conditions
- Fibers do no delaminates

Increasing heat flux and exposed until demise

11

Demise of scaled sample (cylinder configuration) in Plasmatron conditions accounting for tumbling motion

- Large time to demise
- No delamination of the fibers (ablation and spallation)
- Strong metallic species blowing after 10 min of exposure
- Melting and hole in the liner created in the stagnation region

Heat flux	Pressure	time
1,7 MW/m ²	55mbar	900s

ATD3 Workshop 2021

© 2020 Cenaero – All rights reserved

Demise of scaled sample (hemisphere configuration) in Plasmatron conditions accounting for tumbling motion

Heat flux	Pressure	time
0.5 MW/m ²	55mbar	141s
1,8 MW/m ²	55mbar	400s

- Similar trend as for side way configuration
- Few delamination of the fibers until demise (mostly thermo-chemical ablation)
- Average heat flux in tumbling conditions not sufficient to ablate the material (mainly pyrolysis)
- Uniform heating but melting of the liner off stagnation point (demise after 5-6 minutes)

Demise of scaled sample (hemisphere configuration) in Plasmatron conditions accounting for tumbling motion

- Challenges to manufacture small scale sample with wet filament winding, hemispherical shape and thick layer of CFRP
 - Final geometry not axisymmetric
 - Non homogeneous thickness
 - Smoothness of the COPV envelope

Manufacturing and test of new batch of sample

Numerical reproduction of the experimental campaign

ICP simulation

Steady magneto-hydrodynamic flow simulation assuming chemical equilibrium (VKI ICP code)

Numerical reproduction of the experimental campaign

ICP simulation

Steady magneto-hydrodynamic flow simulation assuming chemical equilibrium (VKI ICP code)

Flow and material response

Unsteady Volume Average Navier-Stokes simulation assuming chemical non-equilibrium (Argo code)

Strong gradients to be captured in unified method for dense material responses

Properties	Value for CFRP (high density composite material)	Values for TACOT (low density composite material)
Virgin density [kg/m ³]	1574,56	280
Virgin porosity [-]	0,04	0,8
Char density [kg/m ³]	1158,76	220
Char porosity [-]	0,31	0,85
Conductivity	anisotropic	Isotropic
Initial radius of the fibers [µm]	3,25	5
Tortuosity [-]	1,1	1,1
Permeability [m ²]	1,6e-11	1,6e-11
Emissivity [-]	0,9	0,9

Unified solution for CFRP material response

ATD3 Workshop 2021

© 2020 Cenaero – All rights reserved

Demise of scaled sample (hemisphere configuration) in Plasmatron conditions accounting for tumbling motion

ATD3 Workshop 2021

© 2020 Cenaero – All rights reserved

Objectives:

Develop high-fidelity models for Carbon Fibers Reinforced Polymers materials based on numerical and experimental campaign

- Extension of unified approach to treat dense anisotropic charring materials
- Reproduction of similar atmospheric entry conditions for COPV tanks
 - Design and manufacturing of small scaled samples tanks (to avoid delamination)
 - Definition of representative test matrix in Plasmatron
 - Test campaign performed on first batch of sample
- Preliminary numerical campaign to study dense material response in Plasmatron conditions
 - Reproduction of experimental cases
 - Comparison with experimental data (time to demise, surface temperature, recession rate, thermocouple data)