Advancements in demise testing at VKI: Sub- and supersonic experiments of titanium, Zerodur and quartz

- B. Helber, A. Fagnani, A. Turchi, B. Dias, A. Viladegut, L. Sombaert, T. E. Magin, O. Chazot von Karman Institute for Fluid Dynamics
- P. Schrooyen
 - Cenaero
- L. Walpot

02 December 2021

- von Karman Institute for Fluid Dynamics

Background: Belgian GSTP

Validation of Space Debris Demise Tools using Plasma Wind Tunnel Testing and Numerical Tools

Objectives:

- VKI (Plasmatron, Mutation⁺⁺): High-enthalpy experiments of problematic space debris materials
 Cenaero (ARGO) : High-fidelity models and numerical simulations
- ightarrow strengthening our understanding of demise phenomena
- \rightarrow produce engineering correlations from high-fidelity simulations

engineering correlations for ground casualty risk prediction

Background: Extensive sub- and supersonic demise experiments

The variety of materials make their demise prediction difficult

Background: Extensive sub- and supersonic demise experiments

Design and commissioning of conical and semi-elliptical nozzles (additive manufacturing)

identical length, area ratio and exit area for SEand conical nozzleIdentical cooling loop designShorter nozzle for less expansion

von Karman Institute for Fluid Dynamics

Overview

Experimental methods Plasmatron facility Instrumentation setup and new hardware

Experiments

Quartz Zerodur Titanium

Supersonic

Numerical simulations outlook

Mutation⁺⁺

1D-stagnation line code with melting model

High-fidelity ARGO simulations

1.2 MW Inductively Coupled Plasmatron

A subsonic test bed for re-entry flow reproduction

Gas Power Max. heat flux Pressure air, N₂, CO₂, Ar 1.2 MW 15 MW/m² 10 hPa - 400 hPa

1.2 MW Inductively Coupled Plasmatron

Plasma flow characterization by emission spectroscopy

von Karman Institute for Fluid Dynamics

1.2 MW Inductively Coupled Plasmatron

MHD-CFD simulations: Serving as input to material simulations

In-situ material response characterization

Comprehensive high-temperature experimental setup

FLIR A6750sc MWIR (3-5µm) 450 - 3270 K calibrated (FLIR)

2-colour pyrometer (0.75-1.1μm) 1300 - 3270 K calibrated (NPL London)

Broadband radiometer (0.65-39µm) RT - 3270 K calibrated (NPL London)

Optris 1C pyrometer (3-5µm) RT - 2000 K

Type-K thermocouples (Nickel-Chromium/Nickel-Alumel) RT - 1500 K

In-situ material response characterization

Comprehensive high-temperature experimental setup

FLIR A6750sc MWIR (3-5μm) 450 - 3270 K calibrated (FLIR)

In-situ material response characterization

Quartz surface pyrometry: Problems with transmissivity

New glass pyrometer:

OPTRIS CTlaserG5 spectral range 5µm to be calibrated at VKI emissivity required [*Balat et al.*]

Balat-Pichelin, M., De Sousa Meneses, D., and Annaloro, J. Infrared Phys. Technol., 101, 2019 (68–77)

IR radiometry: calibration and emissivity measurements

1) The instrument response can be simulated for different grey-body emissivities

2) the <u>grey-body emissivity</u> can be measured once the real temperature is known

Overview

Experimental methods Plasmatron facility Instrumentation setup and new hardware

Experiments Quartz Zerodur Titanium

Supersonic

Numerical simulations outlook Mutation⁺⁺ 1D-stagnation line code with melting model High-fidelity *ARGO* simulations

Quartz-HS30-A: no recession

von Karman Institute for Fluid Dynamics

Quartz-HS30-A: Surface radiometry

air 16 g/s, 100 mbar, 290 kW

Quartz-HS50-A: High recession

ZERODUR demise testing

ZERODUR demise testing

ZERODUR demise testing

von Karman Institute for Fluid Dynamics

ZERODUR demise testing

air 16 g/s, 100 mbar, 390 kW

ZERODUR demise testing

air 16 g/s, 100 mbar, 390 kW

Titanium oxidation: difficult to demise and difficult to simulate

von Karman Institute for Fluid Dynamics

air 16 g/s, 50 mbar, 125kW

Titanium oxidation: difficult to demise and difficult to simulate

air 16 g/s, 50 mbar, 125kW

⋆ time, s

1550

Demise material testing overview

	Run	Gas	p _{static} [hPa]	P _{el} [kW]
Quartz	Qz-HS50-A	Air	100	290
	Qz-SC50-A	Air	50	290
	QZ-HS30-A	Air	50	150
	QZ-SC40-A-SS	Air	5	500
Zerodur	Ze-HS30-A	air	50	150
	Ze-HS50-A	air	100	392
Titanium	TiG2-HS30-A	Air	100	160
	TiG2-HS50-N	N_2	50	?
	TiG5-HS30-A	Air	50	125
	TiG5-Sc50-A	Air	50	125

HS50: 50 mm hemisphere-cylinder

Non-equilibrium gas chemistry Low shear HS30: 30 mm hemisphere-cylinder

SC50: 50 mm sphere-cone

Non-equilibrium gas chemistry Uniform melt thickness

Supersonic nozzle commissioning and characterization

Semi-elliptical nozzle for flat plate testing

Supersonic nozzle commissioning and characterization

Conical nozzles for stagnation point testing

Overview

Experimental methods Plasmatron facility Instrumentation setup and new hardware

Experiments Quartz Zerodur

Titanium

Supersonic

Numerical simulations outlook

Mutation⁺⁺ 1D-stagnation line code with melting model High-fidelity *ARGO* simulations

Mutation⁺⁺

MUlticomponent Thermodynamic And Transport properties/chemistry for IONized gases

Include Phase-change material properties

- Zinc (test case)
- silica

Coupling with any material solver (ARGO)

Mutation⁺⁺

MUlticomponent Thermodynamic And Transport properties/chemistry for IONized gases

von Karman Institute for Fluid Dynamics

https://github.com/mutationpp/Mutationpp

Numerical 1D approach: Design of experiments and post-test comparison

Focus on surface energy balance

Adding evaporation and shear ablation

30

High-fidelity simulations with ARGO (coupled material-flow solver)

von Karman Institute for Fluid Dynamics

Summary and Outlook

Subsonic experiments on quartz, ZERODUR[®], Titanium finalized

- → from basic to more complicated test cases, high-quality data for model validation
- \rightarrow in-band emissivities determined with detailed instrument error analysis
- ongoing 1D-modelling by VKI
- ongoing high-fidelity modelling with ARGO (extended to melting materials)
- ongoing surface analysis for oxidation (varying with test condition)
- future detailed oxidation study (?)

Semi-elliptical and conical nozzles commissioned

- \rightarrow characterization for conical nozzles completed
- \rightarrow first stagnation point experiment finalized (quartz)
- ongoing SE-nozzle flat plate characterization early 2022 (dummy sample + calorimeter)
- ongoing simulation with ARGO (extended to treat supersonic flow)
- future SE-nozzle flat plate experiments, including GSTP R.TECH

