

Challenges in Modeling Hollow Objects in the Transition Flow Regime

Chris L. Ostrom⁽¹⁾, Jeremiah J. Marichalar⁽²⁾, Benton R. Greene⁽³⁾

⁽¹⁾ HX5 – Jacobs JETS Contract
 ⁽²⁾ GeoControl Systems – Jacobs JETS Contract
 ⁽³⁾ Jacobs JETS Contract
 NASA Orbital Debris Program Office

ATD³ 2 December 2021

Introduction

- The Object Reentry Survival Analysis Tool (ORSAT) is the primary NASA computer code for predicting the reentry survivability of satellite and launch vehicles
- ORSAT assumes primitive shapes to compute drag and heating coefficients for orbital debris re-entry analysis
 - Most re-entry analysis includes hollow bodies
 - ORSAT does not currently account for flow through hollow bodies

Initial Objective:

- Use high fidelity computational tools to determine drag and heating coefficients for hollow bodies
- Determine a "hollowness" criterion that can be used in engineering model

Background

- Drag and aeroheating coefficients in the transition flow regime are extremely difficult to verify and validate
 - Wind tunnel time is expensive and may not accurately capture all desired flow characteristics
 - CFD inaccurate for 'high' Kn; TPMC inaccurate for collisional flows
 - DSMC is also expensive (wall clock and CPU cycles)
 - We typically use transition functions
 - Sigmoid, log-sine, others common
- If solid objects are difficult enough to model, how do we deal with hollow objects?
- And what does "hollow" mean?

Background

- We frequently deal with hollow objects in reentry simulations (pipes, telescopes, etc)
 - Typically model these using same "solid" shape primitive, just with less surface area for drag and heating
- But!
 - Blockage due to leading edge shocks can increase drag on hollow objects
 - Heating on inner surface needs to be accounted for

Approach (Phase I)

- Use NASA JSC Direct Simulation Monte Carlo (DSMC) Analysis Code (DAC) to simulate hollow-bodied cylinders and prisms in rarefied flow
 - Determine drag and heating coefficients from results
 - Establish a "hollowness" criterion:

$HC_1 =$	$\frac{\dot{m}_{thru}}{\rho_{\infty}V_{\infty}A_{inner}}$	$HC_2 =$	$\frac{\dot{m}_{thru}}{\rho \sim V \sim A_{outar}}$
	P∞V∞Ainner		$p_{\infty}v_{\infty}Aouter$

Input Quantity	Value	
Altitude (km)	111.375	
Freestream Speed (m/s)	7800	
Freestream Density (kg/m3)	7.61E-08	
Freestream Temperature (K)	256.5	
Wall Temperature (K)	300	
Knudsen Number	0.2, 1, 10	
Outer Diameter (m)	0.1, 1, 5	
ID/OD ratio	0.1, 0.5, 0.95	
Angle of attack (°)	0, 45, 90	
Fineness ratio (Length/Diameter)	0.1, 0.5, 1	

Results (1/7)

- Current total of 81 cases
- DAC simulations results shown:
 - Cylinder and Square Prism
 - 45° AoA
 - ID/OD = 0.1, 0.5, 0.95
 - Fineness ratio (L/D) = 1.0, 0.5, 0.1
 - Drag Coefficient carpet plots (function of ID/OD and L/D)
 - Kn = 10, 1.0, 0.2
 - Velocity contours (centerline slices) for Cylinder at 0° AoA
 - ID/OD = 0.1, 0.5, 0.95

National Aeronautics and Space Administration

Results (2/7)

National Aeronautics and Space Administration

Results (3/7)

Results (4/7)

Results (5/7)

National Aeronautics and Space Administration

Results (6/7)

Results (7/7)

Approach (Phase II)

- Continue DAC simulations of solid and hollow-bodied cylinders and prisms in rarefied flow
 - Determine drag and heating coefficients from results
 - Validate current transition flow model for solid bodies, expand hollow body model
 - Implement multi-dimensional database for use in ORSAT 7.0

Input Quantity	Value
Altitude (km)	95-112 km
Wall Temperature (K)	300
Knudsen Number	0.1, 0.5, 1, 5, 10
Outer Diameter (m)	1
ID/OD ratio	0.1, 0.5, 0.95
Angle of attack (°)	0, 22.5, 45, 67.5, 90
Fineness ratio (Length/Diameter)	0.1, 0.5, 1, 2, 5

1000 DAC simulations to be run

Summary

- DAC simulations were used to determine drag and heating coefficients for hollow bodied cylinders and square prisms with varying parameters
- Began quantifying effect of flow through hollow body to establish a "hollowness" criterion
- Developed sparse data tables to be used in the ORSAT aerodynamic and aerothermodynamic models
- Phase II includes new Knudsen numbers, geometric ratios and object orientations

Questions?

References

- See Marichalar, J. and C. Ostrom (2019)
 - <u>https://www.hou.usra.edu/meetings/orbitaldebris2019/orbital2019pap</u>
 <u>er/pdf/6019.pdf</u>
- Scanlon et al. 2015:
 - "Simulations of rarefied and continuum hypersonic flow over re-entry objects," 8th European Symposium on Aerothermodynamics for Space Vehicles, Lisbon, Portugal, ESA Conference Bureau, 2015.