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Motivation
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• Pressure vessels constitute almost half 

of all space debris objects recovered 

post-entry

→ Significant ground risk

• Most appear near-intact, however the 

degree of degradation varies.

• Composite-Overwrapped Pressure Vessels 

(COPV) appear to be particularly survivable.

• We will examine key parameters affecting the 

demisability of both metal pressure vessels and 

COPV through a synthesis of analytical and 

experimental methods informing a parametric study. 

Dissertation A.S. Pagan, University of Stuttgart, 2022 (ongoing)

Image Source: https://www.rt.com/news/sphere-

ufo-space-brazil-103/

Image Source: https://www.universetoday.com/13387/the-

mysterious-case-of-two-spheres-falling-to-earth-in-

australia-and-brazil/



Review of Key Parameters

• Entry trajectory of spacecraft (velocity, angle at entry interface) impact heating pulse 

immensely, but can hardly be optimized for demisability in practice.

• Spacecraft fragmentation (“break-up”) typically around 78 km.

• Pressure vessels are typically released in full due to connecting aluminium structures 

→ Very convenient for analysis.

• Depending on integration with parent spacecraft, PV may be exposed during early entry 

or (partially) shielded until break-up.

• (Empty) propellant tanks typically feature low ballistic coefficient

→ Early deceleration, low heat spikes, but longer overall heating exposure
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Trajectory and Spacecraft Integration



Review of Key Parameters

• Propellant tanks are blunt objects

with high “nose” radii

→ High shock stand-off distance 

reduces effective heat flux

• Connector residues feature low radii

• Effects of local heating spikes 

very obvious on some debris items

• Could perhaps serve as “seed points” to accelerate demise?

• Usually only one-sided (may imply limited tumbling?)

• Tumbling motions effectively distribute heat flux 

over larger surface area

• Spinning motions may incur lift due to Magnus 

effect (varies heavily with flow regime)
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Aerodynamics and Geometry

Dissertation A.S. Pagan, University of Stuttgart, 2021 (ongoing)

Source: https://boredomtherapy.com/s/brazil-metal-sphere?as=799&bdk=0Source: https://scitechdaily.com/metal-sphere-from-

orbit-hits-brazilian-town/



Review of Key Parameters
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Thermo-Ablative Material Response

• Recovered steel and titanium PV:

• Always oxidised, often perforated (often only one side)

• Resolidified droplets on surface, often from protrusions 

or neighbouring structures (e.g. aluminium)

• Recovered COPV:

• Usually almost intact when found

• Overwrap slightly compromised by delamination

• Materials govern thermo-ablative response via:

• Surface properties govern heating interface: Emissivity, 

catalytic properties.

• Intrinsic thermophysical parameters govern internal 

heat transport: Thermal conductivity, heat capacity.

• Phenomenology and thermodynamic implications of 

demise processes, e.g. melt, ablation, pyrolysis…

Image Source: http://www.satobs.org/reentry/2008-

010B/2008-010B.html

Image Source: AFP

Image Source: ESA



Experimental Study

• Accumulated ESA-funded experimental activities at IRS and 

other institutions (see e.g. ESTIMATE database [1] and 

experiments at VKI, DLR, and PROMES, see e.g. [2-3]).

• Emissivity testing: Total and device-specific emissivities 

over large temperature range for pre- and post-test samples.

• Plasma Wind Tunnel testing: Extraction of demise-

relevant properties (phenomenology effective heat of 

ablation, ablation threshold) in simulated entry conditions.

• Combined: Assessment of gas-surface interactions, 

specifically catalytic recombination.

• Many materials investigated. Of relevance here: aluminium 

alloy 7075, grade 5 titanium Ti-6Al-4V, CFRP EX1515/M55J, 

COPV segments.
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Overview



Experimental Study
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Results and Observations (of Relevance here)

• Aluminium Alloy AA7075 (and others):

• Oxide layer forms which can delay spillage of molten bulk

• Time to spillage appears to scale with heat flux

• Oxidation increases emissivity (hardly matters here)

• Titanium Ti6Al4V:

• High melting temperature requires heat fluxes > 1 MW/m²

• Emissivity dramatically increased through oxidation

• Appears to form liquid V2O5 film at moderate ATD loads, generally diverse phenomenology 

→ representativeness of separate emissivity measurements doubtful

• CFRP & COPV segments:

• CFRP behaves like ablator (pyrolytic outgassing, insulation)

• Varyingly increased propensity to delaminate

• Mass loss rate scales roughly with heat flux

AA7075

Ti6Al4V

CFRP EX-1515/M55J

COPV segment



• Simple propagator for (semi-)ballistic entries, verified via 

MIRKA spherical entry capsule flight data [5,6].

• PV modelled as hollow sphere with fixed physical properties 

(m = 8 kg, d = 600 mm, V ≈ 110 L). CD varies over alt. / Ma.

• Three scenarios (see table), three materials evaluated: 

AA7075, Ti6Al4V, CFRP EX-1515/M55J → COPV

• Discretization of sphere into equiangular segments:

• Surface heating profile scaled from stagn. pt. heat flux according to [7]

• Local fast-tumble-averaged heating (via precession angle δ)
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Hollow Sphere Entry Simulation

stagnation
point

Parametric Study

Scenario
Early 

release
Typical Spinning

Release altitude / km 120 78 78

Flight path angle / ° -0.5 -0.835 -0.835

Velocity in air / m/s 7700 7578.5 7578.5

Precession angle / rad 0 π/6 π/2

Lift-to-drag ratio 0 0 0.3

“Early Release”



Parametric Study

02-DEC-21Applying Ground Experiment Findings to the Simulation of Destructive Pressure Vessel Re-entry 10

Material Response Modelling

• Two criteria for perforation (local) / demise (overall):

• Threshold: Critical temperature 

of material surpassed?

• Calorimetric: Sufficient heat 

absorbed for demise?

• Definition of habl (specifically: referenced “modular” 

definition of ሶ𝑞eff) varies depending on power of 

simulation tool and available input data, with

ሶ𝑞eff = χcat ሶ𝑞fc − 𝜀𝜎𝑇w
4 − ሶ𝑞struct

• habl (any variant) empirically extracted from 

demise experiments in PWT at IRS

• Tcrit from literature (to be refined from 

experiments)

Model material 

properties

CFRP EX-

1515/M55J
Ti6Al4V AA7075

Density / kg/m³ 1630 4421 2813

Corresponding wall 

thickness / mm 

(constant mass)

4.34 1.60 2.51

Critical 

temperature / K

500 (pyrol.)

1100 (oxid.)
1900 900

Effective heat of 

ablation / MJ/kg

( ሶ𝑞eff ∶= χcat ሶ𝑞fc)

98 (pyrol.)

45 (oxid.)
2.1 0.73

𝑇w,eq =
ሶ𝑞eff
𝜀𝜎

1
4

> 𝑇crit

𝑄eff
𝐻dem

=
𝐴segment ׬ ሶ𝑞eff 𝑑𝑡

𝑚0 ℎabl
> 1

𝑥cat ሶ𝑞fc

𝜀𝜎𝑇w
4

ሶ𝑞struct

Material sample / PV wall segment 

as a thermo-ablative “black box” 

represented through habl



Parametric Study
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Emissivity and Catalysis

• Immediate thermal equilibration assumed.

• Emissivities from EMF tests and literature [4,8].

• Baseline catalysis model from Goulard and Scott 

[9,10], with flight and ground test frozen BL 

properties approximated via NASA CEA [11].

• Non-equilibrium effects to be accounted for 

according to [12]. For now: Simplistic similitude 

correction function based on results in reference.

• Relational scaling of γO and γN from experimental 

data based on SiC catalysis reference from [13].

PWT test 

condition 

reference for 

extraction of γO, γN
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  707  (virgin,    )

  707  (o idised,    )

C      1 1 /     (   )

Recombination 

coefficients

CFRP EX-

1515/M55J
Ti6Al4V AA7075

γO 1 0.1393 0.0271

γN 1 0.1895 0.0699

Frozen BL 

solution

Temporarily

adjusted for non-

equilibrium effects

“Early Release”



Parametric Study

• Proper implementation of catalysis modelling with non-equilibrium effects ongoing 

(closed form analytical approximation as proposed by Inger [12]) 

→ update to be submitted for 

publication soon!

• Still working on the implementation

(minor bugfixes, adaptive emissivity,

etc.), but almost done! 

• Example: Applied to trajectory of 

spherical MIRKA entry capsule 

(emissivity = 0.85):
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Notes on Consideration of Equilibrium Effects

Non-catalytic (γ = 0)

SSiC (dynamic γ)

Ti6Al4V 

(constant γ)AA7075

(constant γ)



Parametric Study

Material CFRP EX-1515/M55J → COPV Grade 5 Titanium Ti6Al4V Aluminium Alloy AA7075

Scenario:
Early 

release
Typical Spinning

Early 

release
Typical Spinning

Early 

release
Typical Spinning

Tw,max / K 1946 1836 1606 1811 1731 1522 1997 1931 1738

Δt(Tw,peak>Tcrit) / s 464 159 427 0 0 0 406 137 366

ቤ
𝑄eff
𝐻dem global

2.9% 4.2% 6.3% 124% 79.6% 116% 318% 193% 281%

ቤ
𝑄eff
𝐻dem peak

9.4% 10.8% 11.4% 399% 206% 211% 1021% 500% 510%

Dominating 

criterion:
calorim. calorim. calorim. threshold threshold threshold n/a n/a n/a

mimpact / kg
7.83 

(97.9%)

7.71 

(96.4%)

7.34 

(91.8%)
8 (100%) 8 (100%) 8 (100%) 0 0 0

Ekin,term / J 3856 3803 3440 3939 3944 3749 0 0 0

Verdict

CFRP overwrap is essentially an 

ablative TPS.

→ Get rid of it, e.g. by promoting 

delamination?

Borderline case, threshold rarely 

exceeded, predicts occasional 

observation of punctures in recovered 

PV. → Titanium is poor choice.

Demises reliably!
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Results



Summary

• Review of key parameters (trajectory, aerodynamics, geometry, materials) impacting PV 

demisability.

• Nature of spherical PVs provide ideal basis to extrapolate from experimental material 

demise research to material demise models.

• Combined testing methodology provides full picture for material-focused demise 

modelling (emissivity, catalysis correction, heat of ablation), catering to different model 

requirements

• Update coming shortly with proper consideration of full non-equilibrium effects on 

catalysis as proposed by Inger [12] – unfortunately not quite ready by today.

• Results match observations of recovered pressure vessel residue

• Effects of different entry trajectories and attitude states play out differently depending on 

material’s dominance of demise criteria (threshold vs. heat).
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Full lines: Adjusted

for non-equilibrium 

effects

(temporary

similitude function, 

to be replaced)
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 rajectory  lots and Catalysis Correction for “ ypical” and “Spinning” Scenarios
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Frozen BL 

solution
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Note: LD ratio

constant here.

In reality, Magnus 

effect magnitude and 

sign varies 

considerably in 

different flow 

regimes! [9]


