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Motivation
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degree of degradation varies.

Composite-Overwrapped Pressure Vessels
(COPV) appear to be particularly survivable.

We will examine key parameters affecting the
demisability of both metal pressure vessels and
COPV through a synthesis of analytical and
experimental methods informing a parametric study.
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Review of Key Parameters

Trajectory and Spacecraft Integration

« Entry trajectory of spacecraft (velocity, angle at entry interface) impact heating pulse
immensely, but can hardly be optimized for demisability in practice.

Spacecraft fragmentation (“break-up”) typically around 78 km.

Pressure vessels are typically released in full due to connecting aluminium structures
- Very convenient for analysis.

Depending on integration with parent spacecraft, PV may be exposed during early entry
or (partially) shielded until break-up.

(Empty) propellant tanks typically feature low ballistic coefficient
—> Early deceleration, low heat spikes, but longer overall heating exposure
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Review of Key Parameters

Sharp leading edge,
stable attitude

Aerodynamics and Geometry
 Propellant tanks are blunt objects
with high “nose” radii
—> High shock stand-off distance
reduces effective heat flux

Hypersonic
compression
shock

« Connector residues feature low radii y 2

Attached shock front,
intense heating spike
near stagnation point

 Effects of local heating spikes
very obvious on some debris items

« Could perhaps serve as “seed points” to accelerate demise? . \

» Usually only one-sided (may imply limited tumbling?)

« Tumbling motions effectively distribute heat flux
over larger surface area

« Spinning motions may incur lift due to Magnus
effect (varies heavily with flow regime)
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Detached shock front,
better distribution of heat
around stagnation point

Dissertation A.S. Pagan, University of Stuttgart, 2021 (ongoing)

Blunt surface, Blunt surface,
stable attitude tumbling

Boundary layer

Broad heat distribution
by continuous shift of
heating focus
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Review of Key Parameters

Image Source: http://www.satobs.org/reentry/2008-
010B/2008-010B.html

Thermo-Ablative Material Response
+ Recovered steel and titanium PV: =

« Always oxidised, often perforated (often only one side)
» Resolidified droplets on surface, often from protrusions |
or neighbouring structures (e.g. aluminium)
* Recovered COPV:
» Usually almost intact when found

« Overwrap slightly compromised by delamination

« Materials govern thermo-ablative response via:

» Surface properties govern heating interface: Emissivity,
catalytic properties.

* Intrinsic thermophysical parameters govern internal
heat transport: Thermal conductivity, heat capacity.

» Phenomenology and thermodynamic implications of
demise processes, e.g. melt, ablation, pyrolysis...

_" Image Source: ESA
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Experimental Study

Overview

Applying Ground Experiment Findings to the Simulation of Destructive Pressure Vessel Re-entry

Accumulated ESA-funded experimental activities at IRS and
other institutions (see e.g. ESTIMATE database [1] and
experiments at VKI, DLR, and PROMES, see e.g. [2-3]).

Emissivity testing: Total and device-specific emissivities
over large temperature range for pre- and post-test samples.

Plasma Wind Tunnel testing: Extraction of demise-
relevant properties (phenomenology effective heat of
ablation, ablation threshold) in simulated entry conditions.
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Combined: Assessment of gas-surface interactions,
specifically catalytic recombination.

Many materials investigated. Of relevance here: aluminium
alloy 7075, grade 5 titanium Ti-6Al-4V, CFRP EX1515/M55J,
COPV segments.



Experimental Study

Results and Observations (of Relevance here)

* Aluminium Alloy AA7075 (and others):
« Oxide layer forms which can delay spillage of molten bulk
« Time to spillage appears to scale with heat flux

» Oxidation increases emissivity (hardly matters here)

* Titanium Ti6Al4V:

« High melting temperature requires heat fluxes > 1 MW/m?2 R

« Emissivity dramatically increased through oxidation
CFRP EX-1515/M55J

» Appears to form liquid V,O¢ film at moderate ATD loads, generally diverse phenomenology
- representativeness of separate emissivity measurements doubtful
 CFRP & COPV segments:
* CFRP behaves like ablator (pyrolytic outgassing, insulation)
» Varyingly increased propensity to delaminate

» Mass loss rate scales roughly with heat flux

COPV segment
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Parametric Study

Hollow Sphere Entry Simulation
« Simple propagator for (semi-)ballistic entries, verified via
MIRKA spherical entry capsule flight data [5,6].

* PV modelled as hollow sphere with fixed physical properties
(m=8kg,d =600 mm,V =110 L). C varies over alt. / Ma.

* Three scenarios (see table), three materials evaluated:
AA7075, Ti6Al4V, CFRP EX-1515/M55J - COPV
 Discretization of sphere into equiangular segments:
» Surface heating profile scaled from stagn. pt. heat flux according to [7]

» Local fast-tumble-averaged heating (via precession angle 6)
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Parametric Study

Material Response MOde”ing Material sample / PV wall segment
- Two criteria for perforation (local) / demise (overall): as a thermo-ablative “black box
1 represented through h,
« Threshold: Critical temperature o (qeff)4 o7
. : =\ it
of material surpassed? el €o o
: : . Xt
 Calorimetric: Sufficientheat Q.  Asegment J defr dt catfc
: = > 1 _
absorbed for demise? Hyem Mg hap) struct

+ Definition of h,, (specifically: referenced “modular”

Cimulaton on) sy oot Gate i
simulation tool and available input data, with properties 1515/MS5J

Density / kg/m3 1630 4421 2813

Qeff = XcathC - qstr‘uct Corresponding WE
. .. thickness / mm 4.34 1.60 2.51
* h,, (any variant) empirically extracted from (constant mass)
demise experiments in PWT at IRS Critical 500 (pyrol) 1600 900
temperature / K 1100 (oxid.)
* T, from literature (to be refined from Effective heat of  [SSNN
ablation / MJ/kg 2.1 0.73

experiments) 45 (oxid.)

(C'leff 8= Xcathc)
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Parametric Study

Emissivity and Catalysis
* Immediate thermal equilibration assumed.

« Emissivities from EMF tests and literature [4,8].

» Baseline catalysis model from Goulard and Scott
[9,10], with flight and ground test frozen BL
properties approximated via NASA CEA [11].

* Non-equilibrium effects to be accounted for
according to [12]. For now: Simplistic similitude
correction function based on results in reference.

 Relational scaling of y, and y, from experimental
data based on SiC catalysis reference from [13].

Recomblnatlon CFRP EX-
0.1393 0.0271
1

0.1895 0.0699
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Parametric Study

Notes on Consideration of Equilibrium Effects

* Proper implementation of catalysis modelling with non-equilibrium effects ongoing
(closed form analytical approximation as proposed by Inger [12])
—> update to be submitted for
publication soon!

1 e

« Still working on the implementation 0.8
(minor bugfixes, adaptive emissivity,
etc.), but almost done! 0.6

Ti6AI4V

AA7075 (constant y)

onstant y)

cat

- Example: Applied to trajectory of =
spherical MIRKA entry capsule
(emissivity = 0.85):

0.4

SSIiC (dynamic y)

0.2

Non-catalytic (y = 0)

O L L L L L L L
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Parametric Study

A
)
%)
-
—
n

\EACEL CFRP EX-1515/M55J - COPV Grade 5 Titanium Ti6AI4V Aluminium Alloy AA7075

. Early . o Early ; —
release Typical Spinning release Typical Spinning
T /K 1946 1836 1606 1811 1731 1522

ATy, pear® Terit) 'S 464 159 427 0 0 0
Qeff
7 : 2.9% 4.2% 6.3% 124% 79.6% 116%
dem|gioha)
Qefr
H £ 9.4% 10.8% 11.4% 399% 206% 211%
dem peak
calorim. calorim. calorim. threshold threshold threshold
criterion:
7.83 7.71 7.34 0 0 0
Mimpact / K9 (97.9%) (96.4%) (91.8%) 8 (100%) 8 (100%) 8 (100%)
Exinterm / J 3856 3803 3440 3939 3944 3749
CFRP overwrap is essentially an Borderline case, threshold rarely
Verdict ablative TPS. exceeded, predicts occasional
- Getrid of it, e.g. by promoting observation of punctures in recovered
delamination? PV. > Titanium is poor choice.
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Summary

- Review of key parameters (trajectory, aerodynamics, geometry, materials) impacting PV
demisability.

» Nature of spherical PVs provide ideal basis to extrapolate from experimental material
demise research to material demise models.

« Combined testing methodology provides full picture for material-focused demise
modelling (emissivity, catalysis correction, heat of ablation), catering to different model
requirements

- Update coming shortly with proper consideration of full non-equilibrium effects on
catalysis as proposed by Inger [12] — unfortunately not quite ready by today.

« Results match observations of recovered pressure vessel residue

- Effects of different entry trajectories and attitude states play out differently depending on
material’s dominance of demise criteria (threshold vs. heat).
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Appendix
Trajectory Plots and Catalysis Correction for “Typical” and “Spinning” Scenarios
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