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What to do when re-entry just isn’t hot enough?
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Exothermic reactions as a D4D technique

• CNES patent FR2975080-A1 [2] 

‘Élément de véhicule spatial à capacité 

d'autodestruction améliorée et procédé 

de fabrication d'un tel élément’ 

• ESA patent EP3604143-A1 [3] 

‘Exothermic reaction aided spacecraft 

demise during re-entry’
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Exothermic reactions as a D4D technique

• Providing extra energy to undemisable equipment

• Severing the interface between the spacecraft and equipment

• Fragmenting equipment in two or more parts

• Severing secondary mechanical interfaces, e.g. harness, propulsion 

or heat pipes

• Combination of several of the above, where for example the 

interfaces are severed, the equipment is fragmented and additional 

energy is added to the remaining fragments. This use case requires 

predetermined sequencing of events, e.g. by using fuses

• Altering the aerodynamic properties of equipment, e.g. creating a 

hole in a propellant tank [6]

• Severing joints in the spacecraft to enable break up, e.g. by 

introducing energetic materials in the joint or in the spacecraft 

structural panels surrounding the joint/insert

• Creating thermo-elastic stresses that lead to fracture or rupture
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Implementation

• Thermite or thermite-like substances (providing reactant and oxidizer)

• Composition of metal powder and metal oxide, e.g. Fe2O3+Al

• Non-explosive highly exothermic redox reaction

• Limited mass impact

• Safe

• Physically and chemically inert

• Very high ignition temperatures (> 600 degC), only during re-entry

• Fuse technology

• Thermal conductor

• Energetic fuse: Hypergolic reaction

• Energetic fuse: Metallic fuel, oxidizer, binder
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First trials

• Internal ESA assessment in three phases [4]

• Pathfinder tests at ambient

• Tests at temperature

• Tests in plasma wind tunnel [5]

• Test sample inspired by reaction wheel BBU

• Tests limited to one thermite composition
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First trials - Results

• First test campaign yielded mixed results

• Thermite ignition in PWT

• Release of additional energy demonstrated

• Limited impact on demise

• Insufficient thermite for the test sample

• Complicated test sample

• Issues with test predictions and correlation

• Sub-optimal test set-up, yielding a non-

representative temperature distribution
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First trials - Results

• First test campaign yielded mixed results

• Thermite ignition in PWT

• Release of additional energy demonstrated

• Limited impact on demise

• Insufficient thermite for the test sample

• Complicated test sample

• Issues with test predictions and correlation

• Sub-optimal test set-up, yielding a non-

representative temperature distribution

• Sub-optimal thermite composition

• Impact of the formation of slag
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Future development

• ESA activity ‘Spacecraft demise during re-entry using various exothermic reactions’ has just started

• Design, optimization and proof of concept by simulation and test at breadboard level in a representative 

environment of the use of exothermic reactions for demise purposes. The desirability/viability of different 

use cases needs to be assessed

• The correct sizing of the quantity to be used for a given application

• The optimal mixture (compounds, binder, particle size) to achieve the maximum possible energy 

release, as well as a reliable burn process

• The optimal timing/temperature of the ignition, potentially making use of fuses

• The potential negative influence of the reaction products (slag)

• Design and verification of different fuse concepts to provide the energy needed for ignition at various 

temperatures

• Devising design guidelines for use of the technology in various equipment

• Two parallel contracts running

• Consortium 1: 

• Consortium 2: 
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Future development

• Task 1: Theoretical framework and material selection

• Task 1.1: Perform a literature review

• Task 1.2: Assess potential use cases and derive the requirements for the energetic material

• Task 1.3: Establish the required theoretical framework for use of energetic material as a D4D technique

• Task 1.4: Select the materials for further use in this study

• Task 2: Design of proof of concept breadboards

• Task 2.1: Design fuse concepts for testing

• Task 2.2: Design proof of concept breadboards for testing

• Task 3: Breadboard test campaign

• Task 3.1: Test predictions

• Task 3.2: Test campaign

• Task 3.3: Test correlation

• Task 4: Design guidelines

• Task 4.1: Establish design guidelines

• Task 4.2: Collect lessons learned and provide recommendations for further development of this D4D technique
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Conclusions

• D4D usually requires a combination of several techniques

• Exothermic reactions could be used as a new, additional D4D technique

• Compared to re-entry, exothermic reactions add a relatively small additional amount of energy

• The energy can be released where and when it is necessary

• Using exothermic reactions to facilitate demise could provide a paradigm shift, from trying to design all 

equipment for demise, to demising existing equipment with minor changes while leveraging existing heritage
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Feel free to contact the authors for questions: geert.smet@esa.int, rene.seiler@esa.int

Questions?
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mailto:rene.seiler@esa.int
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