

european space technology harmonisation

Industrial Policy Committee - THAG

AVIONICS EMBEDDED SYSTEMS

Roadmap Issue 4 rev. 2 draft (adapted for ADCSS2021) Jean-Loup Terraillon

REFERENCE: ESA-TECH-HO- 022126

ESA UNCLASSIFIED - For ESA Official Use Only

Technologies Covered

Avionics Embedded Sys	tems dossier: roadmap	listing Avionics level	On-board Radio Navigation
cross-sectorial activities a	nd sectorial activities with	a cross-sectorial scope	Receivers dossier
Data Systems sectorial	Control Systems	On-Board Software	TT&C (E2E)
activities with an Avionics	sectorial activities with	sectorial activities with	sectorial activities with an
level scope <u>defined</u> in	an Avionics level scope	an Avionics level scope	Avionics level scope <u>defined</u> in
AES dossier	<u>defined</u> in AES dossier	<u>defined</u> in AES dossier	AES dossier
Data Systems	Control Systems	Software Systems	TT&C E2E
On-board Computers, Data Handling Systems & Microelectronics	AOCS Sensors and Actuators dossiers	On-board Software dossier	TT&C transponders & payload data transmitters

Avionics System functions o/b communication o/b autonomy FDIR Operability AOCS/GNC Space Ground data links Security Smallsats

Architecture & Interface

Integrated Modular Avionics Distributed architecture COTS enabled systems

Development process

Model based avionics

Advanced control techniques for AOCS/GNC Evolvable/reconfigurable avionics systems Avionics verification and validation

ESA UNCLASSIFIED - For ESA Official Use Only

ESA | 13/12/2021 | Slide 2

Key Issues

FULFILLING REQUIREMENTS OF HIGH DEMANDING MISSIONS The needs include a higher degree of autonomy, higher on-board data transfer and storage capabilities, high performance real time sensing, and therefore new processors and different software, reliable network, (smart) sensors, cameras, more powerful downlink and uplink.

OBSOLESCENCE and evolution of technologies, in particular for EEE components: the architecture must be adapted to the available components.

"BIG-DATA" challenge starts on-board, by applying a first level of analysis, selection, computation and storage before downlink.

DETERMINISTIC PROTOCOLS multiplexed with asynchronous ones for high data rate transfers.

Impact on the Data Handling system of the COLLISION AVOIDANCE reliability and safe disposal.

More budget dedicated to the actual mission needs implemented by the payload, while decreasing the "infrastructure" cost of the platform.

- It is not possible to list all the avionics players in Europe.
- There are generic platforms that the Primes have prepared in the scope of their product lines
- There are numerous avionics equipment.
- See the respective dossiers:
- [AOCSSA] TECHNOLOGY HARMONISATION DOSSIER AOCS SENSORS AND ACTUATORS ESA/IPC/THAG(2020)3
- [OBSW] TECHNOLOGY HARMONISATION DOSSIER ON-BOARD SOFTWARE ESA/IPC/THAG(2020)4
- [TTPDT] TECHNOLOGY HARMONISATION DOSSIER TT&C TRANSPONDERS AND PAYLOAD DATA TRANSMITTERS - ESA/IPC/THAG(2020)12
- [OBCDHM] TECHNOLOGY HARMONISATION DOSSIER ON-BOARD COMPUTERS, DATA HANDLING SYSTEMS AND MICROELECTRONICS ESA/IPC/THAG(2021)5
- [OBRNR] TECHNOLOGY HARMONISATION DOSSIER ON-BOARD RADIO NAVIGATION RECEIVERS ESA/IPC/THAG(2019)10

Competitiveness and Benchmarking

Specific discipline status can be found in the relevant technical dossiers [AOCSSA], [OBSW], [TTPDT], [OBCDHM], [OBRNR]

ESA UNCLASSIFIED - For ESA Official Use Only

ESA | 13/12/2021 | Slide 5

Mission Needs and Market Perspectives

ESA UNCLASSIFIED

Function / Requirement	Characteristics / Mission Drivers for Avionics Embedded Systems						
	Telecom	Earth Observation	Navigation	Science (Astronomy)	Exploration (robotics)	Launchers	
Command & Control (including TM/TC)	TM : low TC : low Monitoring: O(100 kbps) Security req's	TM: low to high TC: low Monitoring: O(100 kbps) Security req's Data relay satellite TM/TC	TM: low TC: low Monitoring: O(100 kbps) Security driven	TM: low / medium TC: low Monitoring: O(100 kbps) On-board automated commanding	TM: low/medium TC: low Monitoring: O(100 kbps) Adaptive, on-board automated commanding	TM: high TC: very low Monitoring: O()	
Autonomy	Low for GEO (permanent link) automated on-board plan execution; autonomy for electric propulsion	New requirements for operational/commercial missions	Survival. Autonomy is important for electric propulsion orbit transfer	No visibility periods, comms delay, mission dependent On-board automated commanding	No visibility periods, high availability autonomous phases; with specific cases for rovers	New requirements to come from future reusable launcher.	
FDIR	FDIR driven by quasi- permanent availability	FDIR driven by reliability, availability (for operational programs) and autonomy.	At the constellation level	FDIR driven by reliability and robustness, as well as availability in some cases.	FDIR driven by reliability and robustness, as well as availability in some cases.	Reliable FO/FS High reliability Fault tolerant Guidance and Control	
AOCS / GNC	Permanent pointing Higher accuracy for multi- beam Ka missions Orbit transfer management	Pointing accuracy, stability and agility, mission dependent	Medium accuracy pointing	Pointing accuracy, stability, mission dependent	Autonomous rendez-vous and docking; safe precision Entry Descent and Landing	Improved navigation Missionisation	
Data Management Data Processing Data storage Data transmission 	Platform CC: <100 Mips Data storage: mainly safeguard Data transmission: tbc	Platform CC: <100 Mips Data storage: up to terabits (PL) Data downlink; up to gigabit (specific case) P/L High data processing performance O(1 GFlops)	Platform CC: <100 Mips Data storage: mainly safeguard Data transmission: Tbc	Platform CC: <100 Mips Data storage: up to terabits (PL) Data transmission and downlink; up to 10 Mbps P/L High data processing performance O(500 MFlops)	Platform CC < 100 Mips Data storage O(100 Gigabits) Data downlink Up to 10 Mbps	TM buffer for later downlink of health data	
Cost reductions for mission product and Operations	Increased on-board autonomy (automated on- board plan execution; predictive maintenance)	Increased on-board autonomy; Automated file transfer	Increased on-board autonomy	Increased on-board autonomy; Automated file transfer	Increased on-board autonomy; Automated file transfer	Reduction of exploitation costs	
Reliability, availability and Safety	Reliability driven (long duration operation, end of life deorbiting), short outage (few minutes)	Mainly Reliability driven. Sometimes also availability (meteorological)	Reliability/Availability (taking into account Satellite level redundancy) Certification	Reliability driven + some high availability phases	Reliability driven + some high availability phases	Availability/ Safety	

→ THE EUROPEAN SPACE AGENCY

The following high level European strategic needs can be identified:

To reduce schedule and costs for the development of AES for the operational and commercial missions, e.g. earth observation, navigation and telecom missions.

<u>To enable future missions</u> by providing mature and independent European on-board AES technologies that will support enhanced functionality/performance and reliability as required e.g. for planetary exploration and reusable launchers, at affordable costs.

<u>To strengthen the competitiveness</u> of European space industry and establish synergies to the nonspace sectors where Embedded Systems technologies are thriving.

<u>To ensure European technology non-dependence in this domain by supporting and maintaining the building blocks technologies required to meet the needs of future AES.</u>

➔ Steered by SAVOIR

ESA | 13/12/2021 | Slide 7

ESA UNCLASSIFIED - For ESA Official Use Only

💳 🔜 📲 🚍 💳 🕂 📲 🔚 📰 🔚 📲 🚍 📲 🚍 🛶 🚳 🛌 📲 🚼 🖬 🖬 📾 🛶 🛊 → THE EUROPEAN SPACE AGENCY

SAVOIR

SAVOIR Reference Architecture

Recap of Mapping Meeting

- Electronic Data Sheets (EDS) are relevant for several Harmonisation topics (e.g. AVES, Model Base 4 System Engineering). The interface has not yet been defined, but EDS should be used to define mode-based interface. EDS, most probably, will at some point transition from avionics to systems, also because its scope will be enlarged beyond avionics, e.g. mechanics
- Automation of system processes shall be further analysed as proposed, in particular in the scope of **model based**, the importance of which has been mentioned by several Delegations, e.g. for trade-off between space and ground.
- Al appeared in many presentation. It has been recognised as important. Aspects related to **on-board Al** are addressed in the On-Board Software and On-Board Computers, Data Handling Systems and Microelectronics topics.
- Push for micro-satellites has been recognised by the Executive, who invited in particular the FR companies to put forward their needs towards nano-sats. This topic will be discussed again in SAVOIR.
- Aspects related to Innovation and Spin-in (for example, drones and new-space) will be evaluated.
- A need for **reprogrammable cryptography algorithms** has been confirmed.
- The importance of the notion of functional architecture is recognised. It is related to the avionics validation and the model philosophy, the proposed topic of "design to validation" will be addressed in SAVOIR (including in relation with AOCS/GNC) and impacts reuse and product lines.

ESA UNCLASSIFIED - For ESA Official Use Only

ESA | 13/12/2021 | Slide 10

Proposed Development Approach

AIM A: Develop Avionic Systems Architectures and Building Blocks

> Reference Architectures

Interface

Communication network

Integrated Modular Avionics

COTS enabled systems

AIM B: Pre- Development and Maturation of Advanced Functions

Autonomous Functions

FDIR/RAMS

Evolvable/Reconfigura ble H/W and system

Operability

Security

AOCS/GNC/Control techniques

AIM C: Improve the Avionics Development Processes Methods and Tools

> Model-Based (Avionics) Systems Engineering

Hardware/Software Codesign

Avionics verification & validation

Avionics Test Means

AIM D: Develop Technology Demonstrators / Pilot Applications

ESA UNCLASSIFIED - For ESA Official Use Only

ESA | 13/12/2021 | Slide 11

Conclusions

european space technology harmonisation

- This dossier addresses the common system elements of the sectorial data, control, TT&C, and software systems.
- Some key issues are to fulfill the requirements of high demanding missions, and to manage product lines to reduce non recurring costs.
- The strategic European interest is to reduce schedule and costs, to enable future missions, to strengthen the competitiveness and to ensure European technology non-dependence.
- SAVOIR is the reference for the activities and act as a continuous harmonization process to steer the technologies
- Model based avionics engineering is a key to benefit from the configurability of FPGAs

ESA UNCLASSIFIED - For ESA Official Use Only

ESA | 13/12/2021 | Slide 12

💳 🔜 📲 🚍 💳 🛶 📲 🔚 🔚 🔚 🔚 🔚 🚍 📲 💳 🛶 🚳 🛌 📲 🚼 🖬 🖬 📾 📾 🍁 🔹 → The European space agency

Thank you for your attention

ESA UNCLASSIFIED - For ESA Official Use Only

ESA | 13/12/2021 | Slide 13

🖣 🔜 📲 🚍 💳 🛶 📲 🔚 📲 🔚 📲 🚍 🛻 🚳 🛌 📲 🗮 📥 🖬