
“SOFTWARE COMPONENT MODEL ALIGNMENT OF OSRA AND TASTE –

CONCEPTUAL DESIGN”
Délia Cellarier (1), Régis de Ferluc (1)

 (1) Thales Alenia Space France (Thales Alenia Space-F), France, E-mail:

delia.cellarier@thalesaleniaspace.com, regis.deferluc@thalesaleniaspace.com

Abstract: This paper presents the work that was

performed by Thales Alenia Space-F, together

with Bright Ascension and Viking Software, in

order to define a harmonized approach relying

on the alignment of two different software

component models: OSRA and TASTE. The

implementation concerns of this aligned

component model were considered and led to

some prototyping in the last version of TASTE,

called SpaceCreator.

Keywords: OSRA, TASTE.

1. INTRODUCTION

The SAVOIR Onboard Software Reference

Architecture (OSRA) [1] is a comprehensive

reference architecture for spacecraft onboard

(flight) software developed as part of the

SAVOIR initiative. The associated component

model (SCM for Space Component (meta-)

Model) has been developed specifically for the

needs of a spacecraft on-board software/flight

software, that has to be capable of running on

embedded targets with real time constraints, but

also considering the specifics of monitoring and

control.

TASTE [2] is a general-purpose modelling tool-

chain developed by the European Space Agency

(ESA) and dedicated to the software

development of distributed and embedded

systems. It is an open platform putting together

the result of many years of research on MBSE

techniques, including state machines (SDL),

data modelling (ASN.1), architecture (AADL)

and much more.

Unlike OSRA, TASTE does not address

explicitly some important and specific design

patterns that are required to comply to the

current space system Standards (ECSS), such as

those found in the Packet Utilization Standard

(PUS), making it sub-optimal for an operational

use.

The activity described in this paper aimed at

defining an approach to align the two

component models of OSRA and TASTE, with

two objectives in mind: 1) to introduce OSRA

concepts into TASTE (with priority given to

concepts providing added value to users at short

term, like monitoring & control); 2) to evolve

the OSRA SCM model to allow modelling of the

Execution Platform (seen as a black box in

OSRA) with components.

For this, all features of both OSRA and TASTE

component models were analyzed in order to

determine if they were already aligned, if an

alignment shall be performed or if it was not

possible. The resulting harmonized approach is

summarized in section 2. For each new feature

that shall be introduced in TASTE, its impact on

the new GUI of TASTE (SpaceCreator) was

discussed. This is presented in section 3.

2. SW COMPONENT MODEL ALIGNMENT

2.1. Key concepts

First, the key concepts of the two component

models were addressed: data types, component,

interface, etc.

Even though the concepts of Component in

OSRA and of Function in TASTE were not fully

aligned, it was decided to map an OSRA

Component to a root Function in TASTE. Then,

it was decided to introduce some new features in

TASTE, based on their specification in OSRA:

- The possibility to have several

implementations per component;

- A new Interface concept, grouping

operations and supporting inheritance;

- The definition of the Exceptions

returned by operations (synchronous

only);

- The representation of the Events

exchanged between components.

On the contrary, other features of OSRA were

not retained for the harmonized approach. It is

the case for interface attributes and datasets.

mailto:delia.cellarier@thalesaleniaspace.com
mailto:regis.deferluc@thalesaleniaspace.com

2.2. Layered architecture

The OSRA component model only applies to the

application layer, leaving the underlying

Execution Platform as a black box, which

interacts with Components through “pseudo-

components”. For the harmonized approach, the

objective was to introduce components into the

Execution Platform, giving the architecture

depicted on Figure 2-1 . This figure shows that

most of the functions of the Execution Platform

are to be designed as components in the aligned

component model.

In this new architecture, the pseudo-components

as defined in OSRA are not needed anymore,

except for functions of the Execution Platform

depending on the underlying hardware or

operating system (represented with dashed grey

boxes on Figure 2-1). The implementation of

these “pseudo-Functions” will not be provided

by the user, but by the selected TASTE Board.

For on-board communication and device access,

the device pseudo-component of OSRA

disappears and instead, the SOIS layers are

designed as Functions, using TASTE blackbox

devices for subnetwork access.

Execution platform functions that represent the

ground/board interface are gathered in a PUS

building block. Another tool called OPUS,

which is dedicated to the definition of PUS

services, will be improved in order to generate

this tailored PUS building block and the

associated data types in TASTE.

2.3. Monitoring & Control

Monitoring & Control (M&C) services will be

part of the PUS building block described above.

The generated interfaces of the building block

shall then be connected to interfaces of other

Functions, but only for commandable

operations.

Observabe/modifiable parameters can be

defined in OPUS, or in TASTE as functional

states of applicative Functions, tagged with

M&C descriptors like in OSRA. To access those

parameters, the usual approach with interface

bindings will not be used. Instead, a kind of

blackboard architecture will be generated by the

tool, where data acquisition will be hidden in the

middleware layer. A local API will be accessible

by Functions owning parameters, and a global

API tied to a data pool will be accessible by PUS

services. Code generation will translate the use

of local API to the global API. Local APIs will

involve the use of functional states names, while

the global API will use unique identifiers.

This M&C approach is illustrated on Figure 2-2.

Figure 2-1: Repartition of the OSRA Execution Platform functions in the aligned architecture

Figure 2-2: Example of PUS building block generated from

OPUS

2.4. Dynamic Behaviour

Dynamic behaviour includes the following

topics:

- Non-Functional Properties (NFPs) for

Concurrency & Real-Time Behaviour;

- Interaction Patterns of operations;

- Tasking & Concurrency Model;

- Initialization of components;

- Sequence of Operations;

- Schedulability Analysis.

No new feature will be introduced in TASTE on

these aspects, except the bursty operation kind.

Moreover, Message Sequence Charts (MSCs) in

TASTE have been identified as a way to specify

sequences of operations. A future model-

checking engine could then check if MSCs are

respected.

2.5. Time and Space Partitioning

The TASTE version from Ellidis is currently

aligned with TSP aspects in OSRA thanks to the

results of the MORA-TSP activity, although it

identified room for improvements and future

work. However, those aspects have not been

implemented yet in SpaceCreator.

Concerning NFPs for dependability defined in

OSRA, it was decided not to introduce them in

TASTE.

2.6. Hardware Specification and Deployment

The concept of Board in SpaceCreator is close

to the Processor Board entity in OSRA SCM.

For now, the aligned component model will not

include other entities supported by OSRA

(Devices, RTUs, Network Switches…). This

could evolve depending on the results of an on-

going study which aims at merging COMPASS

[3] and TASTE.

2.7. Applying the SW component model

Topics related to workflow, process, platform

configuration and link with a Spacecraft

Database (SDB) were also discussed.

In the end, it was specified that there should be

a hook to get values from an external source

during code generation. For example, APIDs

either come from the SDB or from OPUS

tailoring, that will then generate a PUS building

block with context parameters. If the SDB

contains all default values, and without OPUS in

the process flow, the SDB can come to overwrite

TASTE default values during code generation.

3. UPDATE OF THE TASTE GUI

The implementation of the new features coming

from the alignment described in section 2 will

have impacts on the GUI of TASTE. For each

feature, an update of SpaceCreator (the new

GUI for TASTE) was specified in this activity.

Some of those updates could be prototyped

during this activity: the support for multiple

Function implementations, and the support for

“pseudo-Functions”.

Figure 3-1 shows that a new Implementations

tab was introduced in SpaceCreator, gathering

all the implementations of a Function. A new

implementation language is also available to

specify if it is a “pseudo-Function”.

Figure 3-1: New implementation tab in SpaceCreator, with the

“pseudo function” implementation language

In the Deployment View of SpaceCreator, the

user can specify for each deployed Function

which implementation shall be used. In addition,

a Board now provides information about the

“pseudo-Functions” it provides.

4. CONCLUSION

The harmonized approach defined in this

activity gives the specification of new features

to be implemented in TASTE based on the

OSRA. Those new features will make TASTE

more suitable for on-board software

development for space missions, by better

assisting users in the design of ECSS-compliant

software. A few features were prototyped in

SpaceCreator, but future work shall be

conducted in order to implement the complete

harmonized approach, including further

developments for the OPUS tool. This shall

allow OPUS and TASTE to be operationally

used on future ESA missions.

5. REFERENCES

[1] "OSRA- Onboard Software Reference

Architecture," [Online]. Available:

https://essr.esa.int/project/osra-onboard-

software-reference-architecture.

[2] "TASTE - A tool-chain targeting

heterogeneous embedded systems, using a

model-based development approach,"

[Online]. Available: https://taste.tools/.

[3] "COMPASS," [Online]. Available:

https://essr.esa.int/project/compass .

	1. INTRODUCTION
	2. SW COMPONENT MODEL ALIGNMENT
	2.1. Key concepts
	2.2. Layered architecture
	2.3. Monitoring & Control
	2.4. Dynamic Behaviour
	2.5. Time and Space Partitioning
	2.6. Hardware Specification and Deployment
	2.7. Applying the SW component model

	3. UPDATE OF THE TASTE GUI
	4. CONCLUSION
	5. REFERENCES

