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MBSE2022 Objectives: T-2, T-3. 
Abstract: Model-Based System Engineering (MBSE) is 
an enabler of the digital continuity. Nevertheless, its 
deployment in space systems is not straightforward due 
to difficulty of the stakeholders to interact when using 
different technologies. One of the key elements that 
would ensure the seamless exchange of engineering data 
and facilitate this interoperability within the MBSE 
community is the definition of a  Systems Engineering 
supporting infrastructure, called System Factory. This 
System Factory supports the System Engineers in 
executing the tasks described in the ECSS-E-ST-10 [1] 
standard when adopting MBSE. The specification of 
such a System Factory, following the ARCADIA method 
[2], was presented in MBSE2021 conference, including 
the results of Operational Analysis, System Need 
Analysis and Logical Architecture [3]. In this paper, we 
present several Physical Architectures of the System 
Factory as well as the refinements and extensions 
performed at both Logical and Physical levels, motivated 
by the results of various parallel ESA R&D activities, 
benchmarking against external initiatives (e.g. INCOSE), 
and addressing the notion of extended enterprise (data 
exchange across the supply chain). Finally, the utilisation 
of the System Factory is illustrated through one relevant 
System Engineering Use Case. 
Keywords: Capella, Data Hub, Digital Continuity, 
Extended Enterprise, MBSE, Ontology, System Factory. 

1. INTRODUCTION 

The architecture of the System Factory is defined 
considering the main exchange scenarios produced 
during the space system development process within an 
organisation or company, including also the interface 
with external stakeholders (i.e. Local System Factory). 
Its Logical Architecture represents the way engineering 
will be done when adopting MBSE independently of any 
underlying technology. It presents how the factory works 
(i.e. functionalities, exchanges) and the decomposition in  
its constituents’ parts (i.e. logical components). 
Although there is not a  unique logical solution, the 
importance of this high-level abstract architecture lies in 
the fact that it has been designed to represent a  reference 
point for all the stakeholders to implement their Physical 
Architectures. To achieve this, its specification considers 
and harmonises the usage scenarios and needs of the 
following Large System Integrators: Airbus Defence and 

Space, Thales Alenia Space and OHB. Recently, the 
model has been updated to also capture the physical 
architecture as used within ESA [4]. 
As the architecture at Logical level is independent from 
any technology or implementation, it allows the 
materialisation of different Physical Architectures 
depending on the implementation, technical and 
technological constraints and choices of each company. 
Currently, three main areas are being analysed. These 
areas are presented in this paper: 
1. Realisation of the System Factory: The Logical 

Architecture of the System Factory is realised by the 
Physical Architecture that represents a  concrete 
physical solution based on existing tools. Several 
Physical Architectures have been modelled 
according to different views, which are presented in 
section 2. 

2. Extension of the System Factory: Following an 
Agile process, the specification of the System 
Factory, especially at Logical and Physical levels, is 
incrementally improved through dedicated sprints in 
which issues are detected and implemented. The 
main activities performed towards the achievement 
of this objective include harmonising the semantics 
used, optimising the architecture by, for example, 
getting rid of functionality duplication, and 
consolidating the Physical Architectures. These 
activities are carried out considering new inputs 
from the involved Large System Integrators. 
Another source of extension of the System Factory 
comes from the integration of the results of MBSE 
applications in ESA projects and ESA R&D 
activities and external initiatives, with the aim of 
producing a fully aligned architecture. This 
integration effort has a major impact on the Logical 
and Physical levels. A table specifying these R&D 
activities, their integration status and their impact on 
the System Factory is provided in section 3. 

3. Utilisation of the System Factory: The ultimate 
goal of the System Factory is to prove that it is 
useful and practical to be implemented in the 
development of space systems. To reach this goal, a  
use case is exercised based on the exchange of 
technical budgets (namely mass and power) within a 
company’s Extended Enterprise (EE) considering 
the usage of the System Factory. Results of the first 
iteration of this activity are presented in section 4. 
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2. SYSTEM FACTORY REALISATION 

Although the Logical Architecture of the System Factory 
provides a detailed overview of its main functionalities, 
and the roles involved, it is the Physical Architecture 
which details how these functionalities are eventually 
realised by a concrete set of Physical Components, 
which in the context of the System Factory represent the 
required Systems Engineering toolset. These Physical 
Components are traced back to the Logical Architecture 
at leaf Logical Component level through a realisation 
link. 
While the Logical Architecture of the System Factory is 
unique and relatively stable over time, the Physical 
Architecture is organization-dependent and expected to 
be much more dynamic as new tools and features 
become available, enabling users to digitalise more and 
more their systems engineering processes. A total of six 
Physical Architectures have been produced, which can 
be grouped per specific viewpoints, defined in the 
following subsections. 

2.1. Organization-driven Physical Architecture 

Within this category, a  total of four Physical 
Architectures have been modelled: one for each of the 
LSIs involved in the study (Airbus, Thales Alenia Space 
and OHB) and one for ESA. 
They have been captured through Physical Architecture 
Blank (PAB) diagrams, identifying not only the tools 
that constitute each Physical Architecture but also their 
exchanges. A dedicated PAB with the classification of 
all the tools contained in these four PABs has also been 
created, grouping them by nature (e.g. MBSE and 
Architectural Tools, Requirements Tools, System 
Analysis and Simulation Tools…). 
These architectures show the adoption of MBSE in each 
organisation, i.e. the organisations’ MBSE infrastructure. 
The capability to export model elements and metrics 
related to them enable to set indicators on adoption of 
MBSE tools or resistance of non-MBSE tools to change 
plans. 

2.2. Ecosystem-driven Physical Architecture: 
Extended Enterprise 

A novel concept that has been introduced to the System 
Factory as part of its extension is that of Extended 
Enterprise, which SEBoK1 defines as “wider 
organization representing all associated entities - 
customers, employees, suppliers, distributors, etc. - who 
directly or indirectly, formally or informally, collaborate 
in the design, development, production, and delivery of a  
product to the end user”. 
In particular, the Extended Enterprise considered is that 
of ESA, which contracts LSIs for the development of 
space systems. Equipment suppliers (i.e. one level lower 
than the LSIs) have not been considered yet in the 
current model. 

 
1https://www.sebokwiki.org/wiki/Extended_Enterprise_ (glossary) 

The resulting Physical Architecture depicts the main 
exchanges between ESA and the LSIs, as well the tools 
that make these exchanges effective. This analysis is 
based on multiple space missions extracted from [4]. 

2.3. Maturity-driven Physical Architecture 

Another viewpoint that has resulted of interest for the 
depiction of the Physical Architecture is that related to 
the maturity of the tools employed. While the 
organization-driven Physical Architecture classifies the 
tools per organization, and the ecosystem-driven 
contextualises it within an organization’s environment, 
the maturity-driven Physical Architecture adds an extra 
layer of information related to the maturity of some of 
the tools that build up the Physical Architecture.  
For this purpose, an R&D Physical Architecture PAB 
has been created, incorporating tools that are currently 
under development, as well as their exchanges with 
already identified tools. The metric selected for 
describing the tools maturity is the Technology 
Readiness Level (TRL). Note that only tools in 
development (referred to as R&D tools) are to be 
assigned with a TRL value, excluding commercial tools 
as the maturity of these is not of interest and already well 
known by the MBSE community. 
Examples of tools included in this R&D PAB include 
TeePee [5] and GSEF (Ground Segment Engineering 
Framework) [6]. Tools that have been found to exchange 
information with them have also been captured in the 
PAB, although not assigned with a TRL as explained 
above. New tools may be added when more R&D 
activities are analysed and their results effectively 
integrated (see section 3). 

3. SYSTEM FACTORY EXTENSION 

One of the main sources identified as driving the need 
for the extension of the System Factory is the 
consideration of parallel ESA R&D activities. To ensure 
the maximum possible alignment between these 
activities and the System Factory, their results are being 
integrated progressively as they become available. Note 
that some of these activities are currently on-going, and 
therefore their integration is expected to happen in the 
near future. Having set the context and the need for the 
consideration of these activities, Table 1 depicts 1) the 
considered R&D projects, 2) their integration status 
within the System Factory and 3) their main impact on 
the architecture. 

Table 1: R&D activities analysed 
R&D Project Integration 

Status 
Impact 

MODEX On-going Logical Architecture 

TeePee4Space On-going Logical & Physical Architectures 

Others (see §3.3) Not started Not analysed yet 

Next subsections summarise these R&D activities and 
the results integrated in the System Factory. 

https://www.sebokwiki.org/wiki/Extended_Enterprise_%20(glossary)


3.1. MODEX 

In the MODEX (Model Exchange for Software 
Engineering) study [7] a  detailed analysis on the ECSS-
E-ST-40C standard [8] and OSRA [9] processes is 
performed, putting the focus on the data and models (so -
called Work Products or Exchange Items) produced 
internally but more importantly externally to the core 
SW development process, the roles that produce them, 
the exchanges between those roles and the supporting 
data exchange formats. As a result, the study describes 
the implementation of the software development process 
when a model-based approach is adopted, in relationsh ip  
with the ECSS-E-ST-40C standard. The outcome of this 
activity was a preliminary Software Factory Functional 
Architecture modelled in Capella, which focused on the 
identification of the main interfaces with the System 
Factory, considered as a black box. These interfaces are 
the target of the MODEX activity integration, putting the 
focus on the System and Software Factories exchanges.  
A dedicated folder within the System Factory Logical 
Architecture is created for the modelling of the Software 
Factory at Logical level, transitioning from the 
functional one. System/Software Factories interfaces 
have been captured through dedicated Logical 
Architecture Blank (LAB) diagrams, as shown in Figure 
1. 

 
Figure 1: Interface between the System Factory and the 
Software Factory functionality “Model Continuity Support” 
This analysis enables the identification of interface gaps 
between the Software and System Factories. Such gaps 
apply to Software Factory functionalities Code 
Development, Integration and Build Support and V&V 
Support, whose associated exchange items are not 
currently supported by any existing System Factory 
functionality, as these refer to code-like artefacts (e.g. 
OBSW binary, Component Code, Execution Platform 
Code). The extension of the System Factory Logical 
Architecture driven by these gaps is precisely the target 
of this analysis and is currently on-going task. 

3.2. TEEPEE4SPACE 

TeePee4Space project [5] was performed as part of the 
OSIP Model-Based System Engineering Campaign as an 
early technology development. The goal of this project is 
to perform several analyses related to the physical 
architecture of the system of interest (e.g. Product 
Breakdown Structure, Mass Analysis, Power 

Consumption Analysis, etc.) on a heterogeneous and 
distributed set of models (e.g. COMET, Cameo, Capella, 
Excel…) showing the benefits of digital continuity at an 
extended enterprise level to systems engineers. For this 
end TeePee tool has been developed, being a platform 
which handles heterogeneous models performing these 
analyses based on the imported models data. 
Three activities are identified which fall within the scope 
of the System Factory. They are currently on-going: 
1. Validation of the System Factory architecture for 

TeePee4Space particular use cases by augmenting 
the scope of both Customer and Payload Supplier 
roles, identifying potential shortcuts and gaps in the 
current System Factory Logical Architecture. These 
use cases refer to embed technical budgets 
exchanges (namely mass and power) within the 
Extended Enterprise in the System Factory Logical 
Architecture. Dedicated diagrams at both Logical 
and Physical levels will be created for this purpose. 
A first iteration of this activity is presented in 
section 4 as a practical example of how the System 
Factory can be used and exploited for a  specific a nd  
relevant systems engineering use case. 

2. Addition of the TeePee tool in the System Factory 
Physical Architecture. As introduced in section 2.3, 
an R&D Physical Architecture PAB has been 
created, which precisely includes TeePee tool as 
well as additional tools which exchange information 
with it as per TeePee4Space defined use cases 
(namely COMET, Cameo and Excel). The main 
goal of this activity is derived from section 2.3 in 
which R&D tools are to be monitored and captured 
in a specific PAB, being TeePee tool the initiator of 
this need. 

3. Impact of the addition of TeePee tool in the Gap 
Analysis performed in [10] between the current 
systems engineering state-of-the-art toolset and the 
System Factory Logical Architecture. The main goal 
of this activity is to identify if any of the highlighted 
gaps would be covered with the implementation and 
deployment of TeePee in the development of space 
systems. This specific activity has not yet been 
started and therefore no further reference has been 
made in the present paper. 

3.3. OTHER R&D ACTIVITIES 

While the work for the integration of both MODEX and 
TeePee4Space projects results have already started, 
showcasing in this paper some preliminary results, 
integration of other projects results is pending and 
scheduled for the near future as they are materialised and 
made available. We expect to present a  more mature 
model at the time of the MBSE 2022 workshop.  
These include Model-Based Engineering Hub (MBEH), 
Space System Ontology (SSO), Model-Based System 
Engineering for AIV (MBSE4AIV), Product Assurance 
as a Service (PASaaS) and Digital Engineering Hub 
Pathfinder (DEHP) activities. 



Figure 3: First iteration of the TeePee4Space use case integration within the System Factory Logical Architecture 

4. SYSTEM FACTORY UTILISATION 

4.1. EXTENDED ENTERPRISE SCOPE 

One of the key objectives of the System Factory and its 
associated Logical Architecture is to be used and 
considered as a reference for organizations and tool 
vendors across the supply chain aiming at digitalising 
their Systems Engineering processes, not limiting its use 
to ESA or LSIs but also to Equipment Supplier 
organisations, among others, as they are all elements of 
the Extended Enterprise involved in the development of 
Space Systems. 
This reutilisation objective sets the scope for the System 
Factory in the sense that it shall be possible to reuse it 
regardless of the organisation nature, be it ESA, an LSI 
or a  lower-level supplier organisation. Therefore, the 
System Factory is based on a three level environment: 
Customer, System of Interest Contractor and Supplier. 

 
Figure 2: System Factory scope within the Extended Enterprise 
The System Factory is then centred at the System of 
Interest Contractor level, with external roles being the 

Customer and the Supplier. Note that the System of 
Interest Contractor could be any organisation involved in  
the development of a  Space System along the supply 
chain, which fulfils the objective initially set allowing 
inserting the System Factory Logical Architecture at any  
level of the Supply Chain based on the Supplier ↔ 
System of Interest Contractor ↔ Supplier environment. 

4.2. TEEPEE4SPACE: A SYSTEMS 
ENGINEERING USE CASE 

One of the identified activities showcasing a high 
synergy between TeePee4Space project and the System 
Factory is the embedding of the use cases described in 
the former into the architecture of the latter. This activity  
totally aligns with one of the main objectives of the 
System Factory, which is to prove itself useful when 
facing the development of space systems by prescribing 
which methods and tools are available for the 
performance of a  given engineering process. In 
particular, the selected use case is the exchange of 
technical budgets (mass / power) within a system 
integrator organisation which implements the System 
Factory. The embedding of this use case takes advantage 
of the Logical Architecture. However, a  dedicated 
Logical Architecture Blank diagram is created for the 
sake of clarity to identify the functionalities required by 
the use case – see Figure 3. 
Figure 3 depicts a  subset of the System Factory Logical 
Architecture showing how external (i.e. Customer and 
Payload Supplier) and internal (i.e. Systems Engineer) 
roles interact with the System Contractor System 
Factory. A total of six functional chains related to the 
TeePee4Space use case have been identified and listed 
on the bottom-right side of the diagram following a 
colour code scheme: 



• Define and Store Physical Architecture: Illustrates 
how the Systems Engineer makes use of the System 
Factory to define and maintain the system of interest  
physical architecture. 

• Edit and Store Technical Budget: Illustrates how 
the Systems Engineer makes use of the System 
Factory to build up a technical budget based on 
selected physical components, including those to be 
provided by the Payload Supplier, and stores it. 

• Show Technical Budget: Illustrates how the 
Systems Engineer makes use of the System Factory 
to request that an already stored technical budget is 
shown. 

• Store Customer Specification and SoW: Illustrates 
how the System Factory manages the reception and 
storage of specifications and statement of work f rom  
the Customer organisation. 

• Get Technical Budget: Illustrates how the System 
Factory handles a request from the Customer 
organisation to be shown a technical budget and to 
import it. 

A dedicated Physical Architecture Blank diagram is 
created with Physical Components that realise the 
Logical Components required in the use case. A Physical 
Component realizes one or more Logical Components, 
and a Logical Component is realized by one or more 
Physical Components.  

 
Figure 4: First iteration of the TeePee4Space use case 

integration within the System Factory Physical Architecture 

Table 2 shows the traceability between the Logical and 
Physical Architectures used to depict TeePee4Space use 
case. Note that only Physical Components implemented 
by the System Contractor are listed since the System 
Factory Logical Architecture depicted in Figure 2 is 
centered on the System Contractor organization. 

Table 2: Realization links between the Logical and Physical 
Architecture for TeePee4Space use case 

Logical Component Physical Component 

Documents and Model Catalogue Service Cameo Systems Modeler 

Product Line Service Cameo Systems Modeler 

Access Controller Cameo Teamwork Cloud 

Datastore Cameo Teamwork Cloud 

System Model Editor Cameo Systems Modeler 

Budgets Controller TeePee 

Similar tables to Table 2 could be derived for the 
Mission Customer and Payload Supplier organisations 
and the corresponding System Factory subset that they 

would use for the derivation of their deliverables (e.g. 
how the Mission Customer uses the System Factory to 
ultimately generate a Mission-level model, and how the 
Payload Supplier makes use of the System Factory to 
ultimately provide the Payload Specification). Similar 
Logical Architecture Blank diagrams to that displayed in 
Figure 3 could be elaborated since as explained in 
section 4.1 the System Factory is centred on the System 
of Interest Contractor and this can be any organisation 
along the supply chain. 

5. CONCLUSION 

The Logical Architecture of the System Factory shall 
serve as a reference to the MBSE community to 
implement their Physical Architectures and enable 
interoperability in the development of space systems as 
illustrated in the TeePee4Space use case. 
The Logical level provides information on which are the 
exchanges that take place, the functionalities involved 
and their allocation, whereas the representation at 
Physical level illustrates how the Logical Architecture is 
implemented in an organisation. Both architectures are 
evolving, e.g. they shall consider results from ESA R&D 
activities, the Physical Architectures depend on available 
MBSE tools, etc. As part of this continuous 
improvement process, stakeholders are encouraged to 
provide feedback on the system factory definition. 
The System Factory model is freely available in the 
ESA’s European Space Software Repository [11]. 
HTML documentation is also provided so that 
installation and use of Capella is not ultimately needed.  
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