
“REALISATION, EXTENSION AND UTILISATION OF THE SYSTEM FACTORY OF
SPACE SYSTEMS”

Carlos Redondo (1), Marina García (1), Tiago Jorge (1), Clément Goujon (2), Stephan Jahnke (3), Jean-Baptiste
Bernaudin (4), Marcel Verhoef (5), Alberto González (5), Elena Alaña (1)

(1) GMV Aerospace and Defence, E-mail: carlos.redondo.aparicio@gmv.com, marina.garcia.d@gmv.com, tiago.jorge@gmv.com, ealana@gmv.com
(2) Thales Alenia Space Italy, E-mail: clement.goujon@thalesaleniaspace.com

(3) OHB System AG, E-mail: stephan.jahnke@ohb.de
(4) Airbus Defence and Space SAS, E-mail: jean-baptiste.bernaudin@airbus.com

(5) European Space Agency, E-mail: marcel.verhoef@esa.int, alberto.gonzalez.fernandez@esa.int

MBSE2022 Objectives: T-2, T-3.
Abstract: Model-Based System Engineering (MBSE) is
an enabler of the digital continuity. Nevertheless, its
deployment in space systems is not straightforward due
to difficulty of the stakeholders to interact when using
different technologies. One of the key elements that
would ensure the seamless exchange of engineering data
and facilitate this interoperability within the MBSE
community is the definition of a Systems Engineering
supporting infrastructure, called System Factory. This
System Factory supports the System Engineers in
executing the tasks described in the ECSS-E-ST-10 [1]
standard when adopting MBSE. The specification of
such a System Factory, following the ARCADIA method
[2], was presented in MBSE2021 conference, including
the results of Operational Analysis, System Need
Analysis and Logical Architecture [3]. In this paper, we
present several Physical Architectures of the System
Factory as well as the refinements and extensions
performed at both Logical and Physical levels, motivated
by the results of various parallel ESA R&D activities,
benchmarking against external initiatives (e.g. INCOSE),
and addressing the notion of extended enterprise (data
exchange across the supply chain). Finally, the utilisation
of the System Factory is illustrated through one relevant
System Engineering Use Case.
Keywords: Capella, Data Hub, Digital Continuity,
Extended Enterprise, MBSE, Ontology, System Factory.

1. INTRODUCTION

The architecture of the System Factory is defined
considering the main exchange scenarios produced
during the space system development process within an
organisation or company, including also the interface
with external stakeholders (i.e. Local System Factory).
Its Logical Architecture represents the way engineering
will be done when adopting MBSE independently of any
underlying technology. It presents how the factory works
(i.e. functionalities, exchanges) and the decomposition in
its constituents’ parts (i.e. logical components).
Although there is not a unique logical solution, the
importance of this high-level abstract architecture lies in
the fact that it has been designed to represent a reference
point for all the stakeholders to implement their Physical
Architectures. To achieve this, its specification considers
and harmonises the usage scenarios and needs of the
following Large System Integrators: Airbus Defence and

Space, Thales Alenia Space and OHB. Recently, the
model has been updated to also capture the physical
architecture as used within ESA [4].
As the architecture at Logical level is independent from
any technology or implementation, it allows the
materialisation of different Physical Architectures
depending on the implementation, technical and
technological constraints and choices of each company.
Currently, three main areas are being analysed. These
areas are presented in this paper:
1. Realisation of the System Factory: The Logical

Architecture of the System Factory is realised by the
Physical Architecture that represents a concrete
physical solution based on existing tools. Several
Physical Architectures have been modelled
according to different views, which are presented in
section 2.

2. Extension of the System Factory: Following an
Agile process, the specification of the System
Factory, especially at Logical and Physical levels, is
incrementally improved through dedicated sprints in
which issues are detected and implemented. The
main activities performed towards the achievement
of this objective include harmonising the semantics
used, optimising the architecture by, for example,
getting rid of functionality duplication, and
consolidating the Physical Architectures. These
activities are carried out considering new inputs
from the involved Large System Integrators.
Another source of extension of the System Factory
comes from the integration of the results of MBSE
applications in ESA projects and ESA R&D
activities and external initiatives, with the aim of
producing a fully aligned architecture. This
integration effort has a major impact on the Logical
and Physical levels. A table specifying these R&D
activities, their integration status and their impact on
the System Factory is provided in section 3.

3. Utilisation of the System Factory: The ultimate
goal of the System Factory is to prove that it is
useful and practical to be implemented in the
development of space systems. To reach this goal, a
use case is exercised based on the exchange of
technical budgets (namely mass and power) within a
company’s Extended Enterprise (EE) considering
the usage of the System Factory. Results of the first
iteration of this activity are presented in section 4.

mailto:marina.garcia.d@gmv.com
mailto:tiago.jorge@gmv.com
mailto:ealana@gmv.com
mailto:clement.goujon@thalesaleniaspace.com
mailto:clement.goujon@thalesaleniaspace.com
mailto:stephan.jahnke@ohb.de
mailto:stephan.jahnke@ohb.de
mailto:jean-baptiste.bernaudin@airbus.com
mailto:claire.parfitt@esa.int
mailto:alberto.gonzalez.fernandez@esa.int

2. SYSTEM FACTORY REALISATION

Although the Logical Architecture of the System Factory
provides a detailed overview of its main functionalities,
and the roles involved, it is the Physical Architecture
which details how these functionalities are eventually
realised by a concrete set of Physical Components,
which in the context of the System Factory represent the
required Systems Engineering toolset. These Physical
Components are traced back to the Logical Architecture
at leaf Logical Component level through a realisation
link.
While the Logical Architecture of the System Factory is
unique and relatively stable over time, the Physical
Architecture is organization-dependent and expected to
be much more dynamic as new tools and features
become available, enabling users to digitalise more and
more their systems engineering processes. A total of six
Physical Architectures have been produced, which can
be grouped per specific viewpoints, defined in the
following subsections.

2.1. Organization-driven Physical Architecture

Within this category, a total of four Physical
Architectures have been modelled: one for each of the
LSIs involved in the study (Airbus, Thales Alenia Space
and OHB) and one for ESA.
They have been captured through Physical Architecture
Blank (PAB) diagrams, identifying not only the tools
that constitute each Physical Architecture but also their
exchanges. A dedicated PAB with the classification of
all the tools contained in these four PABs has also been
created, grouping them by nature (e.g. MBSE and
Architectural Tools, Requirements Tools, System
Analysis and Simulation Tools…).
These architectures show the adoption of MBSE in each
organisation, i.e. the organisations’ MBSE infrastructure.
The capability to export model elements and metrics
related to them enable to set indicators on adoption of
MBSE tools or resistance of non-MBSE tools to change
plans.

2.2. Ecosystem-driven Physical Architecture:
Extended Enterprise

A novel concept that has been introduced to the System
Factory as part of its extension is that of Extended
Enterprise, which SEBoK1 defines as “wider
organization representing all associated entities -
customers, employees, suppliers, distributors, etc. - who
directly or indirectly, formally or informally, collaborate
in the design, development, production, and delivery of a
product to the end user”.
In particular, the Extended Enterprise considered is that
of ESA, which contracts LSIs for the development of
space systems. Equipment suppliers (i.e. one level lower
than the LSIs) have not been considered yet in the
current model.

1https://www.sebokwiki.org/wiki/Extended_Enterprise_ (glossary)

The resulting Physical Architecture depicts the main
exchanges between ESA and the LSIs, as well the tools
that make these exchanges effective. This analysis is
based on multiple space missions extracted from [4].

2.3. Maturity-driven Physical Architecture

Another viewpoint that has resulted of interest for the
depiction of the Physical Architecture is that related to
the maturity of the tools employed. While the
organization-driven Physical Architecture classifies the
tools per organization, and the ecosystem-driven
contextualises it within an organization’s environment,
the maturity-driven Physical Architecture adds an extra
layer of information related to the maturity of some of
the tools that build up the Physical Architecture.
For this purpose, an R&D Physical Architecture PAB
has been created, incorporating tools that are currently
under development, as well as their exchanges with
already identified tools. The metric selected for
describing the tools maturity is the Technology
Readiness Level (TRL). Note that only tools in
development (referred to as R&D tools) are to be
assigned with a TRL value, excluding commercial tools
as the maturity of these is not of interest and already well
known by the MBSE community.
Examples of tools included in this R&D PAB include
TeePee [5] and GSEF (Ground Segment Engineering
Framework) [6]. Tools that have been found to exchange
information with them have also been captured in the
PAB, although not assigned with a TRL as explained
above. New tools may be added when more R&D
activities are analysed and their results effectively
integrated (see section 3).

3. SYSTEM FACTORY EXTENSION

One of the main sources identified as driving the need
for the extension of the System Factory is the
consideration of parallel ESA R&D activities. To ensure
the maximum possible alignment between these
activities and the System Factory, their results are being
integrated progressively as they become available. Note
that some of these activities are currently on-going, and
therefore their integration is expected to happen in the
near future. Having set the context and the need for the
consideration of these activities, Table 1 depicts 1) the
considered R&D projects, 2) their integration status
within the System Factory and 3) their main impact on
the architecture.

Table 1: R&D activities analysed
R&D Project Integration

Status
Impact

MODEX On-going Logical Architecture

TeePee4Space On-going Logical & Physical Architectures

Others (see §3.3) Not started Not analysed yet

Next subsections summarise these R&D activities and
the results integrated in the System Factory.

https://www.sebokwiki.org/wiki/Extended_Enterprise_%20(glossary)

3.1. MODEX

In the MODEX (Model Exchange for Software
Engineering) study [7] a detailed analysis on the ECSS-
E-ST-40C standard [8] and OSRA [9] processes is
performed, putting the focus on the data and models (so -
called Work Products or Exchange Items) produced
internally but more importantly externally to the core
SW development process, the roles that produce them,
the exchanges between those roles and the supporting
data exchange formats. As a result, the study describes
the implementation of the software development process
when a model-based approach is adopted, in relationsh ip
with the ECSS-E-ST-40C standard. The outcome of this
activity was a preliminary Software Factory Functional
Architecture modelled in Capella, which focused on the
identification of the main interfaces with the System
Factory, considered as a black box. These interfaces are
the target of the MODEX activity integration, putting the
focus on the System and Software Factories exchanges.
A dedicated folder within the System Factory Logical
Architecture is created for the modelling of the Software
Factory at Logical level, transitioning from the
functional one. System/Software Factories interfaces
have been captured through dedicated Logical
Architecture Blank (LAB) diagrams, as shown in Figure
1.

Figure 1: Interface between the System Factory and the
Software Factory functionality “Model Continuity Support”
This analysis enables the identification of interface gaps
between the Software and System Factories. Such gaps
apply to Software Factory functionalities Code
Development, Integration and Build Support and V&V
Support, whose associated exchange items are not
currently supported by any existing System Factory
functionality, as these refer to code-like artefacts (e.g.
OBSW binary, Component Code, Execution Platform
Code). The extension of the System Factory Logical
Architecture driven by these gaps is precisely the target
of this analysis and is currently on-going task.

3.2. TEEPEE4SPACE

TeePee4Space project [5] was performed as part of the
OSIP Model-Based System Engineering Campaign as an
early technology development. The goal of this project is
to perform several analyses related to the physical
architecture of the system of interest (e.g. Product
Breakdown Structure, Mass Analysis, Power

Consumption Analysis, etc.) on a heterogeneous and
distributed set of models (e.g. COMET, Cameo, Capella,
Excel…) showing the benefits of digital continuity at an
extended enterprise level to systems engineers. For this
end TeePee tool has been developed, being a platform
which handles heterogeneous models performing these
analyses based on the imported models data.
Three activities are identified which fall within the scope
of the System Factory. They are currently on-going:
1. Validation of the System Factory architecture for

TeePee4Space particular use cases by augmenting
the scope of both Customer and Payload Supplier
roles, identifying potential shortcuts and gaps in the
current System Factory Logical Architecture. These
use cases refer to embed technical budgets
exchanges (namely mass and power) within the
Extended Enterprise in the System Factory Logical
Architecture. Dedicated diagrams at both Logical
and Physical levels will be created for this purpose.
A first iteration of this activity is presented in
section 4 as a practical example of how the System
Factory can be used and exploited for a specific a nd
relevant systems engineering use case.

2. Addition of the TeePee tool in the System Factory
Physical Architecture. As introduced in section 2.3,
an R&D Physical Architecture PAB has been
created, which precisely includes TeePee tool as
well as additional tools which exchange information
with it as per TeePee4Space defined use cases
(namely COMET, Cameo and Excel). The main
goal of this activity is derived from section 2.3 in
which R&D tools are to be monitored and captured
in a specific PAB, being TeePee tool the initiator of
this need.

3. Impact of the addition of TeePee tool in the Gap
Analysis performed in [10] between the current
systems engineering state-of-the-art toolset and the
System Factory Logical Architecture. The main goal
of this activity is to identify if any of the highlighted
gaps would be covered with the implementation and
deployment of TeePee in the development of space
systems. This specific activity has not yet been
started and therefore no further reference has been
made in the present paper.

3.3. OTHER R&D ACTIVITIES

While the work for the integration of both MODEX and
TeePee4Space projects results have already started,
showcasing in this paper some preliminary results,
integration of other projects results is pending and
scheduled for the near future as they are materialised and
made available. We expect to present a more mature
model at the time of the MBSE 2022 workshop.
These include Model-Based Engineering Hub (MBEH),
Space System Ontology (SSO), Model-Based System
Engineering for AIV (MBSE4AIV), Product Assurance
as a Service (PASaaS) and Digital Engineering Hub
Pathfinder (DEHP) activities.

Figure 3: First iteration of the TeePee4Space use case integration within the System Factory Logical Architecture

4. SYSTEM FACTORY UTILISATION

4.1. EXTENDED ENTERPRISE SCOPE

One of the key objectives of the System Factory and its
associated Logical Architecture is to be used and
considered as a reference for organizations and tool
vendors across the supply chain aiming at digitalising
their Systems Engineering processes, not limiting its use
to ESA or LSIs but also to Equipment Supplier
organisations, among others, as they are all elements of
the Extended Enterprise involved in the development of
Space Systems.
This reutilisation objective sets the scope for the System
Factory in the sense that it shall be possible to reuse it
regardless of the organisation nature, be it ESA, an LSI
or a lower-level supplier organisation. Therefore, the
System Factory is based on a three level environment:
Customer, System of Interest Contractor and Supplier.

Figure 2: System Factory scope within the Extended Enterprise
The System Factory is then centred at the System of
Interest Contractor level, with external roles being the

Customer and the Supplier. Note that the System of
Interest Contractor could be any organisation involved in
the development of a Space System along the supply
chain, which fulfils the objective initially set allowing
inserting the System Factory Logical Architecture at any
level of the Supply Chain based on the Supplier ↔
System of Interest Contractor ↔ Supplier environment.

4.2. TEEPEE4SPACE: A SYSTEMS
ENGINEERING USE CASE

One of the identified activities showcasing a high
synergy between TeePee4Space project and the System
Factory is the embedding of the use cases described in
the former into the architecture of the latter. This activity
totally aligns with one of the main objectives of the
System Factory, which is to prove itself useful when
facing the development of space systems by prescribing
which methods and tools are available for the
performance of a given engineering process. In
particular, the selected use case is the exchange of
technical budgets (mass / power) within a system
integrator organisation which implements the System
Factory. The embedding of this use case takes advantage
of the Logical Architecture. However, a dedicated
Logical Architecture Blank diagram is created for the
sake of clarity to identify the functionalities required by
the use case – see Figure 3.
Figure 3 depicts a subset of the System Factory Logical
Architecture showing how external (i.e. Customer and
Payload Supplier) and internal (i.e. Systems Engineer)
roles interact with the System Contractor System
Factory. A total of six functional chains related to the
TeePee4Space use case have been identified and listed
on the bottom-right side of the diagram following a
colour code scheme:

• Define and Store Physical Architecture: Illustrates
how the Systems Engineer makes use of the System
Factory to define and maintain the system of interest
physical architecture.

• Edit and Store Technical Budget: Illustrates how
the Systems Engineer makes use of the System
Factory to build up a technical budget based on
selected physical components, including those to be
provided by the Payload Supplier, and stores it.

• Show Technical Budget: Illustrates how the
Systems Engineer makes use of the System Factory
to request that an already stored technical budget is
shown.

• Store Customer Specification and SoW: Illustrates
how the System Factory manages the reception and
storage of specifications and statement of work f rom
the Customer organisation.

• Get Technical Budget: Illustrates how the System
Factory handles a request from the Customer
organisation to be shown a technical budget and to
import it.

A dedicated Physical Architecture Blank diagram is
created with Physical Components that realise the
Logical Components required in the use case. A Physical
Component realizes one or more Logical Components,
and a Logical Component is realized by one or more
Physical Components.

Figure 4: First iteration of the TeePee4Space use case

integration within the System Factory Physical Architecture

Table 2 shows the traceability between the Logical and
Physical Architectures used to depict TeePee4Space use
case. Note that only Physical Components implemented
by the System Contractor are listed since the System
Factory Logical Architecture depicted in Figure 2 is
centered on the System Contractor organization.

Table 2: Realization links between the Logical and Physical
Architecture for TeePee4Space use case

Logical Component Physical Component

Documents and Model Catalogue Service Cameo Systems Modeler

Product Line Service Cameo Systems Modeler

Access Controller Cameo Teamwork Cloud

Datastore Cameo Teamwork Cloud

System Model Editor Cameo Systems Modeler

Budgets Controller TeePee

Similar tables to Table 2 could be derived for the
Mission Customer and Payload Supplier organisations
and the corresponding System Factory subset that they

would use for the derivation of their deliverables (e.g.
how the Mission Customer uses the System Factory to
ultimately generate a Mission-level model, and how the
Payload Supplier makes use of the System Factory to
ultimately provide the Payload Specification). Similar
Logical Architecture Blank diagrams to that displayed in
Figure 3 could be elaborated since as explained in
section 4.1 the System Factory is centred on the System
of Interest Contractor and this can be any organisation
along the supply chain.

5. CONCLUSION

The Logical Architecture of the System Factory shall
serve as a reference to the MBSE community to
implement their Physical Architectures and enable
interoperability in the development of space systems as
illustrated in the TeePee4Space use case.
The Logical level provides information on which are the
exchanges that take place, the functionalities involved
and their allocation, whereas the representation at
Physical level illustrates how the Logical Architecture is
implemented in an organisation. Both architectures are
evolving, e.g. they shall consider results from ESA R&D
activities, the Physical Architectures depend on available
MBSE tools, etc. As part of this continuous
improvement process, stakeholders are encouraged to
provide feedback on the system factory definition.
The System Factory model is freely available in the
ESA’s European Space Software Repository [11].
HTML documentation is also provided so that
installation and use of Capella is not ultimately needed.

6. REFERENCES

[1] “Space Engineering - Space engineering general
requirements”, ECSS-E-ST-10C Rev.1.

[2] ARCADIA: https://www.eclipse.org/capella/arcadia.html"
[3] “Specification and architecture of a System Factory for

space systems”, MBSE 2021.
[4] “MBSE at ESA: State of MBSE in ESA Missions and

Activities”, Jamie Whitehouse on behalf of ESA TEC-
S/MBSE, MBSE2021 Conference.

[5] “TeePee4Space Final Report”, V076L00T00-008, V1.
[6] “ADGE – Advanced Digital Ground Segment Engineering

– Statement of Work”.
[7] “Relationship Between Process And Software Factory”,

MODEX study, GMV 22788/19 V6/20.
[8] “Space engineering – Software”, ECSS-E-ST-40C.
[9] “OSRA - Onboard Software Reference Architecture”,

https://essr.esa.int/project/osra-onboard-software-
reference-architecture.

[10] “Consolidated Gap Analysis”, SASyF study, GMV
23459/21V4/22.

[11] ESSR: https://essr.esa.int/project/specification-and-
architecture-of-a-system-factory-sasyf

7. ACKNOWLEDEMENTS

This work was supported by the “SASyF Utilisation for
ESA Infrastructure” project, ESA contract
4000136894/21/NL/AS/kk. GMV acts as prime
contractor in this activity with Thales Alenia Space Italy,
Airbus Defence and Space SAS and OHB System AG as
subcontractors.

https://essr.esa.int/project/osra-onboard-software-reference-architecture.
https://essr.esa.int/project/osra-onboard-software-reference-architecture.
https://essr.esa.int/project/osra-onboard-software-reference-architecture.
https://essr.esa.int/project/specification-and-architecture-of-a-system-factory-sasyf
https://essr.esa.int/project/specification-and-architecture-of-a-system-factory-sasyf
https://essr.esa.int/project/specification-and-architecture-of-a-system-factory-sasyf

