Model-Checking for
TASTE designed Space Mocaspace
Software Systems:

_ |
/ ‘n‘.:\ I
Results and Lessons N =
Learned Pplbeed .
S A ,__L ‘ahmm
Iulia Dragomir o :¥ B

GMV

Model Based Space Systems and Software
Engineering (MBSE) 2022

November 23rd, 2022

© GMV - 23/11/2022 - All rights reserved

Introduction

» Model-based Software/Systems Engineering is an established development approach that enables:
Designing large, complex and heterogeneous systems with minimal effort and costs
Obtaining correct-by-construction implementation wrt system requirements with the help of (formal) V&V

= TASTE is an MBSE toolset from ESA that allows:

» Real-time embedded software design
= Software validation through static type analysis, real-time scheduling, interactive simulation and testing

= Open topic: formal V&V of TASTE designs
» Why formal V&V? E.g., Ariane 5, Hitomi, Boeing Starliner, ...

> ESA MoC4Space project (2021-2022) addressed this shortcoming by integrating a formal V&V
approach based on model-checking in TASTE

Ariane 5 explosion, © ESA

awv

© GMV - 23/11/2022 - MBSE'22 Page 2

Position ::= Vector3d Excerpt from ERGO case

TAST E Posezn i+ SEOUECE { study TASTE design

. orient T-Double Data VieW
* Model-based development of heterogeneous, reactive, ~- Definition of Agent-Functional types
d|SCrete embedded Systems Came ..'f-:s_cl 11= ENUMERATED { :ameraf'id'.e,_ccrlgrqftak'irgp'!cf:ure, c_aner?affﬁult, :ameraf_can:e'._}
ScientificcameraPred ::= ENUMERATED { scientificcamera-idle, scientificcamera-scanning, scie

BatteryPred ::= ENUMERATED { battery-set, battery-cancel }

» Uses several modelling formalisms (ASN.1, AADL , SDL, etc.)
or programming languages (e.g., C)
» A TASTE design consists of:
» Data view (in ASN.1)

» Hierarchical interface views (software architecture
and behaviour)

Interface view

(o -~
TELECOMMAND ' TELECOMMAND

» Communication is based on the notion of interfaces:
» Cyclic: execute a behaviour at a certain frequency e R
» Sporadic: whenever a request is received handle it ; -
» Protected: handle the request and provide an B
answer
= Behaviour is either modelled as SDL state machines prcosans
or implemented in C (e) S @
* Deployment view
= Concurrency view computed from the above
guicmdreq.toposition := tc.trav.topose Partition_1 Dep I Oy m e nt
. g view

SDL behavior

guiGoalFinished

© GMV - 23/11/2022 - MBSE'22 Page 3 anwv

Model-Checking

Automated formal verification technique for system
correctness with respect to a defined set of properties

Provides a yes/no answer for property satisfaction
Pros:

» Exhaustive exploration of the model (potentially guided by
properties)

» Fully automated

» Easy production of diagnostic scenarios
Cons:

= State space explosion problem

» Cannot conclude with the allocated resources (e.g., time,
memory)

Model-checking tools: IF, UPPAAL, NuXMV, Spin, LTSmin

© GMV - 23/11/2022 - MBSE’22 Page 4

System System
Specification Property
R
Model - Model Property
Representation Generation Interpretation

Analysis / Checking
Algorithms

Yes/ No . .

Model-checking principles

Our Solution

= Aim: Develop a model-checking technology seamlessly integrated in TASTE and validate it on representative
flight software
» Achievements:

= Open-source model-checking technology based on the IF toolset: https://gricad-gitlab.univ-grenoble-
alpes.fr/verimag/if/if-toolset

= User-friendly and seamlessly integrated in TASTE, works on the modelled software, properties and defined
configuration

» Properties specified in three formalisms: simple Boolean conditions, sequences of interactions or complex
state machines

= Model-checking configuration specified through system subject to verification, possible set of inputs and
model-checker options (e.g., algorithm, time limit for exploration, generation of error/success diagnostics)

* Provides a yes, no or inconclusive result together with graphically-represented diagnostic scenarios
» Validation on 2 case studies:
» A subset of the Intermediate eXperimental Vehicle (IVX) on the Flaps Control System
= An abstraction of the European Robotic Goal-Oriented (ERGO) planetary exploration demonstrator

SherpaTT in Morocco
- during the ERGO field tests
R (Courtesy of DFKI)

awv

IXV sub-orbital flight

DESCENT &

© GMV - 23/11/2022 - MBSE’22 Page 5

https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/if/if-toolset

ERGO Case Study

Scenario inspired by the Mars Sample Return of an autonomous planetary exploration rover able to pick
samples with a robotic arm, as well as taking images of scientific interest
Case study consisting of the simplified functionalities of
Telecommanding (E1) and goal commanding (E4)
Simulation of traverses to specified poses, sample picking/dropping at different location, image taking of
the environment (snapshots or periodically), battery operations and FDIR
Model complexity:
8 SDL functions, 1 GUI function and 1 C++ function

Communication through interfaces: 5 cyclic, 46 sporadic
and 1 protected

16 properties - 3BSC, 7 MSC, 5 OBS - modelled focusing
on the correct behaviour of different components:

2 MSC properties for Agent

1 MSC and 1 OBS for GuidanceControl

1 BSC and 2 OBS for RarmControl

1 BSC for Camera

1 BSC for Batteryl

4 MSC and 2 OBS for FDIR g ERGO TASTE
esign subject to

verification
© GMV - 23/11/2022 - MBSE'22 Page 6 anwv

wizard B

Technology Ove

Software design in TASTE

[

+ 85 hamstastatastin
+ B morkmedkhecki o

rview on ERGO

Boolean Stop Condition property

~ Text area for declarations and comments

monitor st System_State;
monitor event Observable_Event;

errorstates Error;

daploymentuiew.dy
£

Canfiguration | Native F

TASTE Space Creator Model Checking Configuration Window

Select properties to check
Hame
~ _ = properties

- B & bsc_battenyievel

level pe
. E nsc camsstatus

- .5 msc nnwmp

5 msc_batteryurgenthalt
B msc_camershalt
5 mse_quidancenchalt
5 msc_quidancerarmhalt
B msc_takepickdecompasition
9 mse_travdecemposition
5 observer_droppick
8 results
=

Select environment subtyping
Hame
~ 5 subtypes

¥ 8 sublypes, battery_cam props.asn
subtypes_fdipraps, asn
subitypos_guedancepraps.sn
 subtypes_rarmprops asn

Model -checking

‘Select Functions (submodel)
= Name
Model Functions

W sanenz

W ConvertTeiecommand
[

W camera

W Guidancetibrary

W RarmControl

W Groundcontrol

W agent

W satiery1

W Guidancecantrel

elweRe s

st.battery1.state = Wait and st.battery1.batstatus.level < 10.0

Observer property

~ Text area for declarations and comments

monitor st System_State;
monitor event Observable_Event;

errorstates Error;

input ROBOTICARM_REQUEST(cmd) from Agent to RarmControl

cmd.predicate

T
(roboticarm_picking)

CheckDrop

input ROBOTICARM_REQUEST(cmd) from Agent ko RarmControl

md.predicate

Fie Edit Buid Debug Analyze Tools Window Help
= ERGO (master]
ERGO.pro
) B tste
= il Other files
Y Rookins
- 5 workmote checkings
" 15 e patsry
% Battery
+ 5 . btonpurgen
+ [msc_camerahalt
» B msc_guidancenahal
+ 5 msc_guidancerarmi
» [msc_takepickiecory
» B msc_travdecompas|
a deplaymentview.dv.arl
ERGO.acn
ERGO.asn
tu ERGO.msc
& interfacevien.mi

ERGO-DAT

Environment restriction through subtyping

© GMV - 23/11/2022 - MBSE'22

T 1
(roboticarm_dropping) (else)

Error

Diagnostic scenario as

Message Sequence
Chart

Property
Batteryl FDIR ‘GuidanceControl
property-type:
Message venify intended
| POWER_LEVEL FDIR(20. Du_

Sequence o cutonsa |

Ch a rt robotlcarm)lckmg (¢ TR _dropping) (

prope rty *

El'mr
TASTE Space Craator Modal Checking Configuration Window
Configuration [SPIN
IF options
Generate: |y Error scenarios v/ Success scenarios
rceminanied St o

Max. number of scenarios to look for: |5,

Time kit (sec) for exploration: 10 recn

ended fiekd)

Exploration aigorithm OFS (Depth First Search) ~

Max. number of environment calt 0 (optionsi fiex

Max. number of states to explare: optional fied

Scenarios found
call IF
9 output

oy

ol

/A\ Do you confirm you want to call IF? Default output folder will be
LY rebuins

@res

o

Calling the model-checker

Page 7

TASTE Space Creator Model Checking Canfiguration Window

Configuration

IF options

Generate:

Max, number of scenarios ta laok fer: |5

“Time limit {sec) for exploration: 10

Explaration algerith;

Max. number of envir

Max. mumber of states to explore

m

onment calls o

Native model-checker

/| Error scenarios

IF modek-checker

v Success scenarios
frecommended fieis)
{recommended fieid)

DFS (Depth First Search) =

(optianal fieid)

(optianal field)

Scenarios found

call IF

Name

- & output

YYYYY

&l.scn
€2 5en
&3.50n

model_batterylevel_s
model_batterylevel

model_batterylevel_
model_batterylevel _ed.scn
model_batterylevel_es.scn
model_batterylevel el msc
model_batterylevel_e2 mse
model_batterylevel_e3.msc
model_baterylevel_eq.msc
model_batterylevel_e5.msc

SPIN model-checker

ERGO Verification Results

Diagnostics #

Name Type Verif. Time | States # | Transitions # Success/Error
Low Batteryl level BSC dmin 19sec 223679 531261 0 /2100
RarmControl failure BSC 17min 43sec | 3974112 4338035 0 / 156
Camera failure BSC 14sec 17646 42203 0/ 1688
Correct takepic planning MSC — search fromstart intended Omin 03sec 1383603 2843730 48 /0
Incorrect trav planning MSC — search fromstart unintended | 12min 45sec | 2087586 4407512 0 /2172
FDIR Camera recovery MSC — search intended 4min 9sec 205544 586504 56 /0
Late FDIR Battery2 level recovery MSC — search nnintended 18min 24sec | 1206700 2706555 0n/o
GuidanceControl failed halt MSC - search unintended 2min (4sec 281145 716403 0/5
FDIR Batteryl recovery MSC — verify intended fisec 7926 13671 104 /0
FDIR halt recovery MSC — search intended 60min Osec | 10007572 19002513 0n/o
FDIR watchdog OBS Imin 40sec 240307 626117 0n/o
Failed FDIR Camera recovery 0BS 2min 46sec 206280 466684 0 /325
Incorrect pose achieved 0BS 22min 42sec | 2923303 8804045 0/24
Incorrect RarmControl — drop hefore pick OBS 20minlGsec | 3945862 43010445 0 /1016
Incorrect RarmControl — no home position OBS 48mind8sec | 2627531 2852032 0/ 51290

Average verification time: 15min

© GMV - 23/11/2022 - MBSE'22

Page 8

Lessons Learned (1/2)

= Assessment with respect to the following criteria:
Overall approach and usability of the technology

» User-friendly technology automating most of the steps
System design and model-checking configuration

» The design needs to be adapted to the verification, e.g., dedicated interfaces with the environment,
data types definition easily subject to subtyping, partially support of some modelling features (C++
implementations)

Property specification and formalisms proposed
» The MSC property language not expressive enough to semantically describe complex interaction
properties (e.g., starting with a conjunction)
Identification of explicit modelling errors within the case studies
= The MSC language not expressive enough to identify modelling errors from the diagnostic traces
Performance of the model-checker
= The satisfaction of 1 property of the ERGO case study could not be concluded within 1h!

© GMV - 23/11/2022 - MBSE'22 Page 9 anwv

Lessons Learned (2/2)

» Guidelines for model-checking amenable system design

» Design the software systems to enable the property projection on functions and the fine-grain control of
the environment

» Optimize the timed behavior, e.g., increase the reactivity of the system, group real-time behavior (cyclic
interfaces, timers)

= Simplify the communication between functions, e.g., upon change of status
» Model complex interaction properties with state machines

© GMV - 23/11/2022 - MBSE'22 Page 10 anwv

Conclusion and Perspectives

= Step forward for large scale adoption of system design and model-checking

= Open-source technology, integrated in TASTE distribution

= Limitations:

Input languages: SDL, C/CPP (stateless functions), MSC/OBS; TASTE supports many more

State explosion is still a problem

Mitigated through fine-grained control of data ranges and verified functions

= Future work

Improve expressivity, i.e., support more constructs and/or other inputs languages, e.g., structured MSCs
Address the state explosion through model slicing

Offer more advanced simulation/debugging features

© GMV - 23/11/2022 - MBSE'22 Page 11 anwv

Thank you!

idragomir@gmv.com

Institut de Recherche
en Informatique de Toulouse
CNRS - INP - UT3 - UT1 - UT2J

erimac
© GMV - 23/11/2022 - All rights reserved INNOVATING SOLUTIONS

