
© GMV - 23/11/2022 - All rights reserved

Model-Checking for
TASTE designed Space
Software Systems:
Results and Lessons
Learned

Iulia Dragomir

GMV

Model Based Space Systems and Software
Engineering (MBSE) 2022

November 23rd, 2022

(Courtesy of ESA)

⊨
✓

IF Toolset
model-checking

MoC4Space

© GMV – 23/11/2022 – MBSE’22

Introduction
▪ Model-based Software/Systems Engineering is an established development approach that enables:

▪ Designing large, complex and heterogeneous systems with minimal effort and costs

▪ Obtaining correct-by-construction implementation wrt system requirements with the help of (formal) V&V

▪ TASTE is an MBSE toolset from ESA that allows:

▪ Real-time embedded software design

▪ Software validation through static type analysis, real-time scheduling, interactive simulation and testing

▪ Open topic: formal V&V of TASTE designs

➢ Why formal V&V? E.g., Ariane 5, Hitomi, Boeing Starliner, …

➢ ESA MoC4Space project (2021-2022) addressed this shortcoming by integrating a formal V&V
approach based on model-checking in TASTE

Page 2

Ariane 5 explosion, © ESA

© GMV – 23/11/2022 – MBSE’22

TASTE
▪ Model-based development of heterogeneous, reactive,

discrete embedded systems

▪ Uses several modelling formalisms (ASN.1, AADL , SDL, etc.)
or programming languages (e.g., C)

▪ A TASTE design consists of:

▪ Data view (in ASN.1)

▪ Hierarchical interface views (software architecture
and behaviour)

▪ Communication is based on the notion of interfaces:
▪ Cyclic: execute a behaviour at a certain frequency
▪ Sporadic: whenever a request is received handle it
▪ Protected: handle the request and provide an

answer

▪ Behaviour is either modelled as SDL state machines
or implemented in C

▪ Deployment view

▪ Concurrency view computed from the above

Page 3

Data view

Excerpt from ERGO case
study TASTE design

Interface view

SDL behavior

Deployment
view

© GMV – 23/11/2022 – MBSE’22

Model-Checking
▪ Automated formal verification technique for system

correctness with respect to a defined set of properties

▪ Provides a yes/no answer for property satisfaction

▪ Pros:

▪ Exhaustive exploration of the model (potentially guided by
properties)

▪ Fully automated

▪ Easy production of diagnostic scenarios

▪ Cons:

▪ State space explosion problem

➢ Cannot conclude with the allocated resources (e.g., time,
memory)

▪ Model-checking tools: IF, UPPAAL, NuXMV, Spin, LTSmin

Page 4

Model-checking principles

© GMV – 23/11/2022 – MBSE’22

Our Solution
▪ Aim: Develop a model-checking technology seamlessly integrated in TASTE and validate it on representative

flight software

▪ Achievements:

▪ Open-source model-checking technology based on the IF toolset: https://gricad-gitlab.univ-grenoble-

alpes.fr/verimag/if/if-toolset

▪ User-friendly and seamlessly integrated in TASTE, works on the modelled software, properties and defined
configuration

▪ Properties specified in three formalisms: simple Boolean conditions, sequences of interactions or complex
state machines

▪ Model-checking configuration specified through system subject to verification, possible set of inputs and
model-checker options (e.g., algorithm, time limit for exploration, generation of error/success diagnostics)

▪ Provides a yes, no or inconclusive result together with graphically-represented diagnostic scenarios

▪ Validation on 2 case studies:

▪ A subset of the Intermediate eXperimental Vehicle (IVX) on the Flaps Control System

▪ An abstraction of the European Robotic Goal-Oriented (ERGO) planetary exploration demonstrator

Page 5

SherpaTT in Morocco
during the ERGO field tests

(Courtesy of DFKI)
IXV sub-orbital flight

https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/if/if-toolset

© GMV – 23/11/2022 – MBSE’22

ERGO Case Study
▪ Scenario inspired by the Mars Sample Return of an autonomous planetary exploration rover able to pick

samples with a robotic arm, as well as taking images of scientific interest

▪ Case study consisting of the simplified functionalities of

▪ Telecommanding (E1) and goal commanding (E4)

▪ Simulation of traverses to specified poses, sample picking/dropping at different location, image taking of
the environment (snapshots or periodically), battery operations and FDIR

▪ Model complexity:

▪ 8 SDL functions, 1 GUI function and 1 C++ function

▪ Communication through interfaces: 5 cyclic, 46 sporadic
and 1 protected

▪ 16 properties - 3BSC, 7 MSC, 5 OBS - modelled focusing
on the correct behaviour of different components:

▪ 2 MSC properties for Agent

▪ 1 MSC and 1 OBS for GuidanceControl

▪ 1 BSC and 2 OBS for RarmControl

▪ 1 BSC for Camera

▪ 1 BSC for Battery1

▪ 4 MSC and 2 OBS for FDIR

Page 6

ERGO TASTE
design subject to

verification

© GMV – 23/11/2022 – MBSE’22

Technology Overview on ERGO

Page 7

Software design in TASTE

Model-checking
wizard

Message
Sequence
Chart
property

Boolean Stop Condition property

Observer property

Environment restriction through subtyping
Calling the model-checker

Diagnostic scenario as
Message Sequence

Chart

© GMV – 23/11/2022 – MBSE’22

ERGO Verification Results

Page 8

Average verification time: 15min

© GMV – 23/11/2022 – MBSE’22

Lessons Learned (1/2)
▪ Assessment with respect to the following criteria:

▪ Overall approach and usability of the technology

▪ User-friendly technology automating most of the steps

▪ System design and model-checking configuration

▪ The design needs to be adapted to the verification, e.g., dedicated interfaces with the environment,
data types definition easily subject to subtyping, partially support of some modelling features (C++
implementations)

▪ Property specification and formalisms proposed

▪ The MSC property language not expressive enough to semantically describe complex interaction
properties (e.g., starting with a conjunction)

▪ Identification of explicit modelling errors within the case studies

▪ The MSC language not expressive enough to identify modelling errors from the diagnostic traces

▪ Performance of the model-checker

▪ The satisfaction of 1 property of the ERGO case study could not be concluded within 1h!

Page 9

© GMV – 23/11/2022 – MBSE’22

Lessons Learned (2/2)
▪ Guidelines for model-checking amenable system design

▪ Design the software systems to enable the property projection on functions and the fine-grain control of
the environment

▪ Optimize the timed behavior, e.g., increase the reactivity of the system, group real-time behavior (cyclic
interfaces, timers)

▪ Simplify the communication between functions, e.g., upon change of status

▪ Model complex interaction properties with state machines

Page 10

© GMV – 23/11/2022 – MBSE’22

Conclusion and Perspectives
▪ Step forward for large scale adoption of system design and model-checking

▪ Open-source technology, integrated in TASTE distribution

▪ Limitations:

▪ Input languages: SDL, C/CPP (stateless functions), MSC/OBS; TASTE supports many more

▪ State explosion is still a problem

▪ Mitigated through fine-grained control of data ranges and verified functions

▪ Future work

▪ Improve expressivity, i.e., support more constructs and/or other inputs languages, e.g., structured MSCs

▪ Address the state explosion through model slicing

▪ Offer more advanced simulation/debugging features

Page 11

© GMV – 23/11/2022 - All rights reserved

Thank you!
idragomir@gmv.com

