TOOLCHAIN TO CONNECT

———— EDS AND TASTE

Model Based Space Systems and Software Engineering - MBSE2022

SPACE

Agenda

* TASTE
* EDS

* Project goals

e EDS <-> TASTE translation
 EDS <> ASN.1
* EDS <->InterfaceView
« EDS ->SDL

* TASTE integration

* HWAS

* Demonstration use case
* Lessons Learned

e Wishlist

TASTE

* "Atool-chain targeting heterogeneous embedded systems, using an MBSE development approach”

* Includes graphical and text editors, build management, compilers, code generators, runtimes, communication drivers....

* Developed by ESA and based on standards:

 AADL —logical and physical architecture description

* Since the move to SpaceCreator, AADLisan intermediate representation, and XML is used for persistence
« ASN.1 (ACN) —data model specification (with additional encoding information)
* SDL - for high-level behaviour description

e But can also integrate other technologies — e.g., C, Ada, C++, Simulink... and now EDS

* Can generate executables for various hardware targets
* e.g., x86 (Linux), GR712RC (RTEMS) or SAMV71 (FreeRTOS)...

* |tis open-source — free to use by companies and individuals

* Please visit https://taste.tools/

SPACE

https://taste.tools/

(3 interfaceview.xml @ ERGO [master] - Ot Creater@go-vmecl52171

File Edit

Proje s T
~ [E ERGO [master]
= ERGO.pro

~ [taste

=| = taste.pro
+ [agent

+ [batteryl

+ [battery2

+ [batterytype

+ [camera

Welcome

"i b + [converttelecommand

v [fir

+ [guidancecontrol
+ [guidancelibrary
+ [rarmcontrol

~ [i#@ Other files

Debug

ERGO.acn
ERGO.asn
1| ERGO.msc

4
Open Documents

ERGO.asn
ERGC.msc
interfaceview.xml

|;I 3

Debug

| 2

+ [/home/ubuntujtool-inst/shg
1o deploymentview.dv.xml

interfaceview.xml

> B =

[N © Type t

View Build Debug Analyze Tools Window Help

frequency T-UInt

1

—- BATTERY DATA (AGENT-FUNCTIONAL)
Batterystatus ::= SEQUENCE {
predicate BatteryPred,

level T-Double
1
—-- BATTERYCMD DATA (AGENT-FUNCTIONAL}
Batterycmdstatus ::= SEQUENCE {
predicate BatterycmdPred
1

—- GUIDANCECMD DATA (AGENT-FUNCTIONAL})

Guidancecmdstatus : SEQUENCE {
predicate GuidancecmdPred,
atposition Pose2D,
fromposition PoselD,
+anncitinn DAcaan

4

<l

O ConvertTelecommand
O BatterySystem

O Camera

O Agent

Import Component

Shared Types

O
G
=
B
S
<
X
@
S}
&

GeDo STER
ROROTICARM REQUEST s | RARM STATUS FOIR
ROSDICARN STATUS RamiCantrol _HAIT RARM
CAMERA REQUEST
e
CAM FOR
CAMERA STATUS | o

+q

| SEmACERN Fom

CIENTIFICCAMERA REQUEST camara

™ HALT CamERs

SCIENTIFICCAMERA STATUS +

BATTERYCMD REQUEST 1
-

FOWER LEVEL FOIR
SATTERYCMD STATUS 1 -

BATTERY STATUS 1_

AZ®OR

Link with a Qt installation to automatically register Qt versions and kits? To do this later, select Edit > Preferences > Kits > Qt Versions > Link with Qt.

4 ERG 8 =N
Name B
~ = ERGO x RarmPrepertyl
2 TakeFicDecomposi... N GuidanceControl RarmControl property-type: FDIR
3 Batteryllevel ’ verify intended
E BatteryZLevel
E3 TravDecomposition z GUI_WDOG(guidahcecmd-goingte) -
[|
EJ RarmProperty2 .
T A N RARM_STATUS_FDIR{robotlcarm-movmq
x
B CameraProperty HALT_GUl(other)
HALT RARM{other;
" < i ()
@
o
" C L] I ———
Interface view 3=
DataView.asn P
£ B E Lasn 3| X Line: 1,1 B+ [interfaceview.xml 8 B+ [
RoverpasitionPred EMUMERATED [roverposi= Connection Layers “A
RoboticarmPred ::= ENUMERATED { roboticarm-i S
traval travel
b GuidanceLbrary
—-- CAMERA DATA (AGENT-FUNCTIONAL}
Camerastatus ::= SEQUENCE {
predicate CameraPred GuidanceControl
¥ e o) SUIWDOS G wWooG
» [\ -~
IV Structure
—- SCIENTIFICCAMERA DATA (AGENT-FUNCTIONAL} O GuidanceLibrary FUIOACEoHE ST e ot |
Scientificcamerastatus SEQUENCE { O RarmControl ROVERPOSITION STATUS
predicate ScientificcameraPred, =

RARM STATUS FDIR
b

HALT RARM
-

FOIR
CAM FOR
b

SCENTEICCAM FOR

HALT CAMERA
~d

POWERLEVEL DR |

G0 STER

Link with Qt | | Do Not Show Again | X

*sourced from https://taste.tuxfamily.org/wiki/index.php?title=Overview

SPACE

2022

EDS

e CCSDS 876-0-B-1 Spacecraft Onboard Interface Services Electronic Data Sheets
* Referred simply as EDS within the scope of this activity

e EDS is an XML specification describing:

* Datatypes
* e.g., Integers, Containers, Arrays...

* Interfaces
 Commands and parameters, both synchronous and asynchronous

* Behaviours
* Statemachines
* EDSis intended to replace traditional Interface Control Documents and proprietary data sheets
with machine readable interface specifications
* The formatis suitable for describing devices and applicationsin terms of their data interfaces
and internal behaviour

SPACE

EDS

* There is a significant overlap between TASTE and EDS model scopes

* Translation between TASTE and EDS models can:
* Provide indirect authoring tools for EDS
e TASTE includes SpaceCreator, which contains editorsfor ASN.1 and InterfaceView
* Provide code generation for EDS
* TASTEincludes asnlscc, kazoo and OpenGEODE to generate code from ASN.1, InterfaceView and SDL respectively
» Strengthen TASTE function as a technology hub, providing interoperability with EDS

SPACE

Project goals

* The main objective of the activity is to:

"orovide a working toolset for EDS by extending TASTE with import/export
functionalities, allowing to make actual use of EDS in real-life applications”

* Inorder to achieve the objective, the following tasks were foreseen:
* Creation of EDS to ASN.1, InterfaceView and SDL translator
* Creation of ASN.1 and InterfaceView to EDS translator
* Integration of the tooling within SpaceCreator
* Creation of a TASTE runtime for SAMV71, compatible with EDS-based components

e Creation of a demonstration application running on a microcontroller connected to sensors and actuators

SPACE

EDS to ASN.1 translation example

EDS

name="SignedIntegerl6Big"
A simple 16-bit signed integer
encoding="twosComplement"” byteOrder="bigEndian" sizeInBits="16"

rangeType="inclusiveMinInclusiveMax" min="-32768" max="32767"

ACN

SignedIntegerl6Big :: .. 32767) SignedIntegerl6Big [size 16, encoding twos-complement, endianness big]

SPRACE 2022

EDS to InterfaceView translation example

name="SyncInterface"

name="SyncNoArgsCommand"” mode="sync"

name="SyncInCommand"” mode="sync"
name="SyncInArgumentl” type="MyInteger" mode="in"
name="SyncInArgument2” type="MyInteger" mode="in"

EDS

name="SyncOutCommand"” mode="sync"
name="SyncOutArgumentl” type="MyInteger" mode="out"
name="SyncOutArgument2” type="MyInteger" mode="out"

name="SyncInterfacePI_SyncNoArgsCommand_Pi" kind="Protected" layer="default"

name="SyncInterfacePI_SyncInCommand_Pi" kind="Protected" layer="default"
name="SyncInArgumentl” type="MyInteger" encoding="ACN"
name="SyncInArgument2” type="MyInteger" encoding="ACN"

InterfaceView

name="SyncInterfacePI_SyncOutCommand_Pi" kind="Protected" layer="default"
name="SyncOutArgumentl" type="MyInteger" encoding="ACN"
name="SyncOutArgument2" type="MyInteger" encoding="ACN"

SPRACE 2022

EDS to SDL translation example

EDS

ine name="VirtualLED"
ce name="Uninitialized"
name="0ff"
name="0n"

fromState="Uninitialized" toState="Off" name="Initialize™

command="Init" interface="LedControl"

activity="Initialize"

fromState="0ff" toState="0On" name="ToggleOn"
Primitive command="Enable" interface="LedControl"
activity="IssueCommand"
- = name="value"
variableRef="enableValue"

command="Disable" interface="LedControl"

SPACE

SDL

/* CIF Start (@, 1050), (280, 75) */
START;
/* CIF NextState (@, 1237), (200, 50) */
NEXTSTATE Uninitialized;
/* CIF State (@, 1312), (200, 50) */
state Off;
/* CIF Input (@, 1312), (200, 5@) */
input LedControl_Enable_Pi;
/* CIF ProcedureCall (@, 1387), (1ee, 50) */
call IssueCommand(Enablevalue);
/* CIF NextState (@, 1462), (200, 50) */
NEXTSTATE On;
endstate;
/* CIF State (600, 1312), (200, 58) */
state On;
/* CIF Input (600, 1312), (200, 50) */
input LedControl Disable_ Pi;
/* CIF ProcedureCall (600, 1387), (100, 50) */
call IssueCommand(Disablevalue);
/* CIF NextState (600, 1462), (2008, 58) */
NEXTSTATE Off;

Uninitialized

e

Uninitialized

LedControl_Init_Pi<
|

Initialize

Off

Off

endstate; LedControl_Disable_Pi<

/* CIF State (1200, 1312), (200, 508) */

LedControl_Enable_Pi<

state Uninitialized; [

/* CIF Input (1200, 1312), (200, 50) */
input LedControl_Init_Pi;

IssueCommand(Disablevalue)

IssueCommand(Enablevalue)

/* CIF ProcedureCall (1200, 1387), (1e@, 50) */
call Initialize;
/* CIF NextState (1200, 1462), (200, 50) */ Off
NEXTSTATE Off;

endstate;

3

*graphical layout adjusted

for readability

2022

TASTE integration

 All translation functionality is available via command line

e Forinclusion in build systems, continuous integration, and advanced users

* The translation functionality is also wrapped in convenient import/export functions available in

SpaceCreator GUI:
p Window Help
ASMN.1JACN = E
C++
aMLs O
Tests E_
Code Pasting =
Bookmarks
Test Interface @
Git ped
Interface view Import SDL from EDS
Form Editor Import ASN.1 from EDS
External Export InterfaceView to EDS
Diff Export ASN.1 to EDS
Options... g
[=

SPRACE 2022

TASTE integration

* The translationto SDL is done on-the-fly

* Experimental feature

system_structure_types.xml

ka name="SEDSDEMO_DATAVIEW">

ype name="MyInteger":>
1

taType>

SPACE

axRange min="0" max="100608" rangeType="inclusiveMinInclusiveMax"/>

system_structure.xml

yEdsComponent">

name="MyEdsComponentsynccallPi">
name="synccallPi" mode="sync">
ent type="MyInteger" name="x" mode="1in"/>

2022

InterfaceView (using ASN.1 data model)

o

[=]E]x]

1l MyEdsComponent I
asynccall
=

Attributes | Context Parameters

* SOISEDS is also supported as a function implementation language T | Er—

Implementations

Language

Archetypes

Current

Add

Fox X cancel

myedscomponent.xml

ude all data types from asn models - generated code --»

1t name="myedscomponent™>
Include all components for MyEdsComponent - generated code —->

here --»

name="5tateMachine">
name=""dummy"

= href="system_structure_types.xml" parse="xml" xpointer="xpointer(//*[local-name()="DataTypeSet']/*

1iclude href="system_structure.xml" parse="xml" xpointer="xpointer(//*[@name="MyEdsComponent']/+)"/>

Hardware Access EDS

 Management of MCU peripherals (such as GPIO, ADC, and UART) requires access to memory-mapped
registers and interrupts

* Both the EDS component implementation and the SDL dialect it is translated to does not have the
concept of a raw "pointer", memory operations or interrupts

* The approach taken in the activity uses a proxy component — Hardware Access EDS (HWAS)

 HWAS consists of:
e EDS interface specification —to be used by other EDS components

 Cimplementation —for handling memory accesses and interrupts

* The developed HWAS implementation is specific to ARM SAMV71 MCU, but the interface could be
reused for various other embedded platforms

SPACE

Demonstration use case

* Asmall platform with a combination of TASTE and EDS components

* LIDAR instrument
* Mock "Sun sensor", based on a greyscale sensor connected to SAMV71's ADC
e LIDAR, combining COTS TF Luna sensor handled via UART, contact sensors read via GPIO and a stepper motor driven via GPIO
e LEDs for visual output, driven via GPIO

* 3D printed case

SPRARACE 2022

Demonstration use case

* The following EDS specifications were created:
« HWAS - containing only data types, as well as memory and interface declarations
* PIO HWAS - for manipulating SAMV71’s GPIO, accessing the HW via HWAS
 UART HWAS - for handling SAMV71’s UART, accessing the HW via HWAS and PIO HWAS
« AFEC HWAS - for reading analogue signals using SAMV71’s ADC, accessing the HW via HWAS
e SunSensor - for acquiring readings from the greyscale sensor, accessed via AFEC HWAS
* TfLuna - for acquiring range data from TF Luna LIDAR, accessed via UART HWAS
« MP6500 - for controlling the stepper motor via a HW motor driver, accessed via PIO HWAS

* Lidar -forming the combined sensor/actuator, forwarding the data from TfLuna, and managing its rotation by controlling
the stepper motor via MP6500 and contact sensors via PIO HWAS

SPACE

Demonstration use case

e Software prototype demonstrating TF Luna sensor usage

UartHwas InitUartCmd Ri

[~ =
TfLunaReturnHwas ErrorReadDataCmd Ri TfLunaReturnHwas ErrorReadDataCmd Ri 9Uam-lwas SendByteAsyncCmd Ri
<46 & %
TfLunaHwasDriver qL‘!:nl-iwas SendByteAsyncCmd Pi
Manager TfLunaReturnHwas ReadDataCmd Ri TfLunaReturnHwas ReadDataCmd Ri qEl:rtﬂwas ReadByteAsyncCmd Pi
46 69) O L 0 (Y [A |
TfLunaHwas InitTfLunaCmd Pi TfLunaHwas InitTfLunaCmd Pi UartHwas ReadByteAsyncCmd Ri
- &p >
& UartHwas InitUartCmd Pi
& Init op
PioHwas InitPin Pi UartHwas SendByteAsyncCmd Pi
46 1 3 e
RawMemoryAccess WriteWord Ri 4 PioHwas GetPin Pi UartHwas SendByteAsyncCmd Ri‘ﬂ
: , 46 o
SHC A VAL PioHwas ResetPin Pi | UartHwas ReadByteAsyncCmd Ri
“
RawMemoryAccess ReadWord Ri <& =
; S UartHwas ReadByteAsyncCmd Pi
4 PioHwas SetPin Pi | =
<46 PioHwas InitPin Ri
PioHwas GetPin Ri
PioHwas ResetPin Ri
<
PioHwas SetPin Ri UartHwasDriver
Lt T L] ! ‘RawMemoryAccess WiiteWord: Rig
ey o e orc Rl ol D2 A L
InterruptSubscriptionManagement SubscribeTolnterrupt Pi InterruptSubscriptionManagement SubscribeTolnterrupt Ri
HWAS
InterruptManagement Disablelnterrupt Pi InterruptManagement Disablelnterrupt Ri
&
InterruptManagement Enableinterrupt Pi InterruptManagement Enablelnterrupt Ri
46 =
InterruptSubscription Interrupt Ri InterruptSubscription !nterrupt?i'a
e na

SPACE 2022

Lessons Learned

» All EDS specifications for the hardware peripherals were implemented, deployed onto the target
hardware and tested, confirming the feasibility of fully describing onboard hardware devices via
Electronic Data Sheets

* Both physical (PIO, AFEC and UART) and virtual (LIDAR, MP6500, SunSensor)

* The design of the translator involved discussions between N7S and ESA regarding the exact
interpretation of certain EDS constructs and their practical mapping onto TASTE

* As a consequence of the specific design choices made within this activity, EDS implementations not
sharing the same assumptions and limitations may exhibit compatibility issues

SPACE

Lessons Learned

* Once the translatorwas implemented, the required EDS specifications were created by an embedded
engineer without previous exposure to MBSE, TASTE and EDS, providing a good perspective from a
validation point of view

* Definition of data types and interfaces was done directly in EDS XML without the help of TASTE->EDS
translator and was executed without major issues

* Understanding of EDS interface directions and their mapping onto TASTE was problematic

* The issue was quickly resolved after several concrete examples were provided and exercised

SPACE

Lessons Learned

* EDS component implementation has proven itself to be difficult and time consuming
* Translation from SDL to EDS was not available
* N7S was not in possession of any dedicated tools, except for a schema aware XML editor

* Understanding of complex state machines, with long lists of actions and embedded conditional statements, is difficult, both
for authoring and review

* Code executed on the target hardware was the assembly generated from Ada, translated from SDL, which was derived from
the input EDS state machine

* This made troubleshooting quite challenging

* Theissue was mitigated to some extent by prototypingin C

SPACE

SPACE

Lessons Learned

* Asthe engineer had to directly edit a format thatis supposed to be just machine readable, the lack of
authoring tools was deemed to be an issue

e EDS commands have both input and output/notify arguments, but activities have arguments without
any mode, and thus they are assumed as being input only

* This makes writing helper utilities more difficult, as any calculation results must be stored in state machine variables

* SDL allows to define state machines in a more compact and flexible way than EDS

e Each EDS transition has "fromState" and "toState" attributes, explicitly defining single state names, while SDL may use special
state symbols (*, -) and state lists, which make writing sets of logically identical transitions much faster, more readable and
easier to maintain

* In EDS, for each transition trigger and start state, the single end state is explicitly defined, while SDL allows to perform
computation during the transition and decide on the target state in runtime. This limitation was worked around by manually
defining an additional, separate, internal state machine in the activity set.

* EDS on timer transition has a fixed "nanosecondsAfterEntry" attribute, while SDL timers are schedulable with variable time

* SDL contains the concept of continuous signals, while EDS does not

SPACE

Lessons Learned

Both EDS and SDL use abstractions decoupled from hardware, and so any interactions with it have to be
performed via a proxy component written in a native language

In the current implementation provided via TASTE, each memory (and so e.g., register) access is done via
function calls, though "glue-code"

* The resultis that GPIO toggle timings were measured to be in the range between 7.5 and 75 microseconds, depending on
the cache settings
« Sufficient for many cases

e Insufficientfor e.g., custom protocolsimplemented via "bit-banging"

In the current implementation provided via TASTE, interrupts are reported via sporadic interfaces, and so
reporting involves message passing via a queue

* High-speed interrupt handling may be a challenge, or infeasible at all

Memory consumption, requiring a few kB of stack per each thread, created for each sporadic interface
(translated from each async command), is considered higher than it could be
* Not a problem on SAMV71 with 2 MB of SDRAM, but could be an issue for large systems or smaller MCUs

SPACE

"Wishlist"

Authoring tools for EDS state machines

* Datatypes and interfaces can be generated using TASTE... but are also easy to write manually in an XML editor

» State machines could benefit from a native editor, but also from e.g., SDL to EDS translator
Special state symbols and state lists as EDS transition start and end states

Choice of the target state during EDS transitions

* e.g., via omitting "to" attribute and providing an activity body element indicating the end state

On timer transitions with variable timing
[maybe] SDL continuous signals as EDS transition triggers
[maybe] Connection with lower-level standards for hardware access

[maybe] Linking EDS component implementations to external specifications

* For example, C or SDL, like it is done in TASTE InterfaceView

Thank you for your attention

Michat Kurowski
mkurowski@n7space.com

Filip Demski
fdemski@n7space.com

SFRARLCE

+48 22 2992050
WWWw.n7space.com

SPRACE 2022

mailto:mdziezyc@n7space.com
mailto:rbabski@n7space.com
http://www.n7space.com/

