

SysML Version 2 – Final Stretch

Hans Peter de Koning (DEKonsult)

ESA MBSE2022 Workshop, 22-24 November 2022, Toulouse, France

Note: Material in this presentation is based on publicly released information from the SysML Version 2 Submission Team, of which the author is a member.

What is SysML?

- Systems Modeling Language
 - by Object Management Group (OMG)
- a general-purpose graphical modeling language for specifying, analyzing, designing, and verifying complex systems that may include
- hardware, software, information, personnel, procedures, and facilities (from https://www.omgsysml.org)
- A language supporting MBSE Not an MBSE methodology
- SysML v1 is a profile & extension of UML2
- OMG standard (officially "adopted specification")
 - Version 1.0 released 2007
 - In real industrial use since 2010 v1.2
 - Many tool implementations COTS and open source
 - Latest release is v1.6 (December 2019)
 - v1.7 completed and adopted public release expected soon will be the final version 1.x
- Also used for system modelling / concepts in OMG UAF (Unified Architecture Framework)
 - UAF is for system-of-systems (SoS) modelling and enterprise architecture
 - UAF is the unification of DoDAF, MoDAF and NAF successor to UPDM
 - UAF v2 will use SysML v2 for system modelling

«DigitalEngineering»

MBSE2022 Workshop | Toulouse | 22-24 Nov 2022

Strength: Enabled implementation on top of mature UML tools & good support for software intensive systems

Weakness: "Software engineering flavoured" tools caused steep learning curve for many systems engineers «DigitalEngineering»

OMG SysML v2 Development Timeline

2015 2016 2017	2018 2019 2020	2021 2022	2023 2024
SysML v2 RFP WG	SysML v2 Submission	n Team (SST)	Finalization Task Force
Request for Proposal • Including SE Concept Model • Started 2015 • Language RFP released Dec 2017 • API RFP released May 2018	 Initially two submission teams – since end 2018 merged into one Started Jan 2018 on language (KerML & SysML) Started June 2018 on API & Services Agile workflow with monthly sprints Initial submission of language & API Spec's delivered to OMG on 17 Aug 2020 (3 parts: KerML, SysML language, API & Services) Includes working open-source pilot implementations and training material with examples Monthly releases on Github of specifications, training material and pilot software 	 Major stakeholders' review held in Feb 2021 Revised submission delivered to OMG on 30 Aug 2021 for review Revised submission 2 delivered to OMG on 15 Sep 2022 for in-depth review Final submission to OMG 07 Nov 2022 of KerML and API & Services specs Final submission to OMG 20 Feb 2023 of SysML language spec Acceptance of 3 specs expected at March 2023 OMG technical meeting 	 Finalization of the specifications Monthly releases of pilot implementations and training material will continue Production tool developments & industrialization (both COTS and opensource) Official SysML v2.0 expected end 2023 / beginning 2024

SysML v2 Requirements and Constraints

- Extensive RFP (Request for Proposal)
 - Based on thorough analysis addressing the shortcomings of SysML v1
 - Broad participation from many industry sectors
 - Part 1: Systems Modeling Language (SysML[®]) v2 RFP
 - 141 mandatory and 31 non-mandatory requirements
 - See https://www.omg.org/cgi-bin/doc.cgi?ad/2017-12-2
 - Part 2: Systems Modeling Language (SysML[®]) v2 API and Services RFP
 - 19 mandatory and 25 non-mandatory requirements
 - See <u>https://www.omg.org/cgi-bin/doc.cgi?ad/2018-6-3</u>
- SysML v2 shall be based on SMOF (Semantic Meta Object Facility)
 - Provides support for temporal aspects and multiple classifications
 - Information modelling founded on strong formal, semantic framework
 - Allows for mapping to other semantic frameworks like RDF/OWL2 DL
- Must provide migration path from SysML v1 that can be automated
 - For both tool and model/data transition

6.5.2.5 Behavior Requirements Snippet from Language RFP

BHV 1: Behavior Requirements Group

BHV 1.01: Behavior

Proposals for SysML v2 shall include the capability to model a Behavior that represents the interaction between individual structural elements and their change of state over time.

SysML v1.X Constructs: Activity, State Machine, Interaction, Simple Time

BHV 1.02: Behavior Decomposition

Proposals for SysNL v2 shall include the capability to decompose a behavior to any level of decomposition, and to define localized usages of behavior at nested levels of decomposition.

Supporting Information:

The decomposition of behavior should conform to a similar pattern as the decomposition of structure, and include capabilities for specialization, redefinition, and sub-setting.

The decomposition should also include the equivalent capability to decompose a SysML v1 activity on a BDD, and the ability to decompose actions using a structured activity node.

 $\mbox{SysML v1.X Constructs:}$ Composited Association of Behavior Classifiers with Adjunct Properties

BHV 1.03: Function-based Behavior Group

BHV 1.03.1: Function-based Behavior

OMG RFP

9 D	ecember 2017
-----	--------------

49

MBSE2022 Workshop | Toulouse | 22-24 Nov 2022

SysML v2 Submission Team (SST)

SST formed December 2017

- Leads:

«DigitalEngineering» DEKonsult

Sandy Friedenthal (SAF Consulting) Ed Seidewitz (Model Driven Solutions)

- Broad team of end-users, vendors, academia, and government liaisons
 - Currently around ~215 members from 86 organizations
 - Large aerospace participation, but many other industry sectors as well
 - Majority of SysML tool vendors on board
- Develops integrated submission for both Language and API & Services

Aerospace Corp

- Airbus
 - ANSYS medini
- Aras
- Army Aviation & Missile Center
- Army CBRND
- U.S. Army DEVCOM Armaments Center Georgia Tech/GTRI
- BAF
- BigLever Software
- Boeing
- Budapest Univ of Tech and Economics Intercax (BME)

Academia/Research

- CalTech CTME
- CEA
- Contact Software
- Defence Science and Technology Group
- DEKonsult
- Delligatti Associates

End User

- Draper Lab Elparazim
- ESTACA

Participating Organizations

- Eraunhofer FOKUS
- Galois
- General Motors
- George Mason University GfSE

Ford

- IBM
- Idaho National Laboratory
- IncQuery Labs
- Itemis
- Jet Propulsion Lab
- Iohn Deere
- KTH Royal Institute of Technology
- LieberLieber
- Lightstreet Consulting
- Lincoln Lab
- Lockheed Martin
- MathWorks
- Maplesoft
- Mercury Systems

Tool/Training Vendors **Government Rep**

- MID MITRE
- ModelAlchemy Consulting
- Model Driven Solutions
- Model Foundry
- Naval Postgraduate School (NPS)
- NIST
- No Magic/Dassault Systemes
- OAR
- Obeo
- OOSE
- Ostfold University College
- Phoenix Integration/ANSYS
- PTC

н.

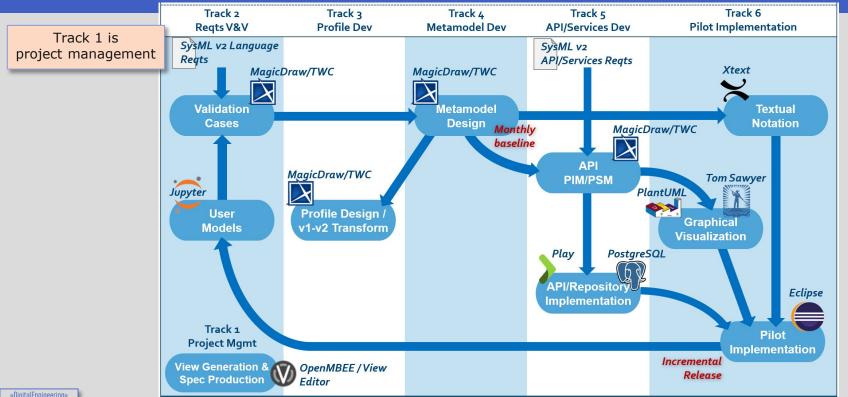
- Qualtech Systems, Inc (QSI) Raytheon
- Rolls Royce
- Saab Aeronautics
- SAF Consulting *
- SAIC
- SEI

- Sierra Nevada Corporation Simula
- Space Cooperative
- Sodius Willert

Siemens

- System Strategy *
- Tata Consultancy Services
- TES
- Thales
- Thematix
- Tom Sawver
- Twingineer
- UFRPF
- University of Western Switzerland (Rosas Center)
- University of Cantabria
- University of Alabama in Huntsville
- University of Detroit Mercy
- University of Kaiserslautern / VPE
- Vera C. Rubin Observatory
- Vitech

INCOSE rep *


88solutions

MBSE2022 Workshop | Toulouse | 22-24 Nov 2022

Slide 5

SST Agile / Incremental Development Workflow

«DigitalEngineering» DEKonsult

Revised Submission 3 = Release 2022-10 7 Nov 2022 – 3 specs

Kernel Modeling Language (KerML)

Version 1.0 Release 2022-10

Submitted in partial response to Systems Modeling Language (SysML®) v2 RFP (ad/2017-12-02) by:

Lockheed Martin Corporation
MITRE
Model Driven Solutions, Inc.
PTC
Simula Research Laboratory AS
Thematix Partners
F

Final submission KerML done 7 Nov 2022

OMG Systems Modeling Language TM (SysML®)

Version 2.0 Release 2022-10

Submitted in response to Systems Modeling Language (SysML®) v2 RFP (ad/

2017-11-04) by:	
88Solutions Corporation	Lockheed Martin Corporation
Dassault Systèmes	MITRE
GfSE e.V.	Model Driven Solutions, Inc.
IBM	PTC
INCOSE	Simula Research Laboratory AS
Intercax LLC	Thematix Partners

Final submission SysML v2 scheduled for 20 Feb 2023

Date: November 2022

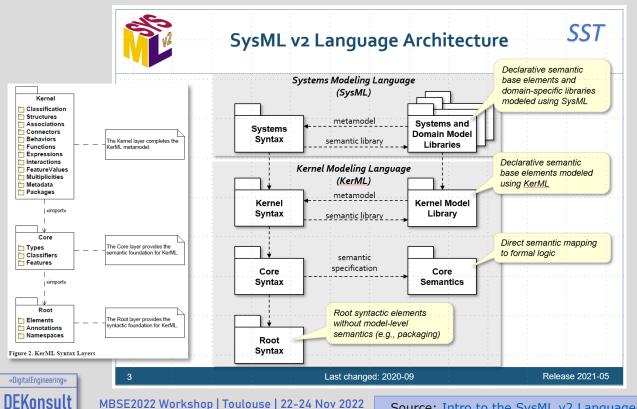
Systems Modeling Application Programming Interface (API) and Services

Version 1.0 Release 2022-10

Submitted in response to Systems Modeling Language (SysML®) v2 API and Services RFP (ad/2018-06-03) by:

88Solutions Corporation	Intercax LLC
Dassault Systèmes	Lockheed Martin Corporation
GfSE e.V.	Model Driven Solutions, Inc.
IBM	PTC
INCOSE	Simula Research Laboratory AS

Final submission API & Services done 7 Nov 2022


Latest release always at https://github.com/Systems-Modeling/SysML-v2-Release/tree/master/doc

MBSE2022 Workshop | Toulouse | 22-24 Nov 2022

Date: November 2022

New Layered Architecture

- KerML: generic, rigorous, minimal, formal semantic foundation
 - Formal semantics, in OWL2 ontology style, but expressed in SMOF
 - Domain-independent
 - Not constrained by UML2
- SysML: adaptation and extension for systems engineering
 - Systems engineering concepts and terminology
 - Model libraries of essential and generally used concepts
- Extensible by design

Source: Intro to the SysML v2 Language-Textual Notation on GitHub

Impression of the new v2 terminology w.r.t. v1

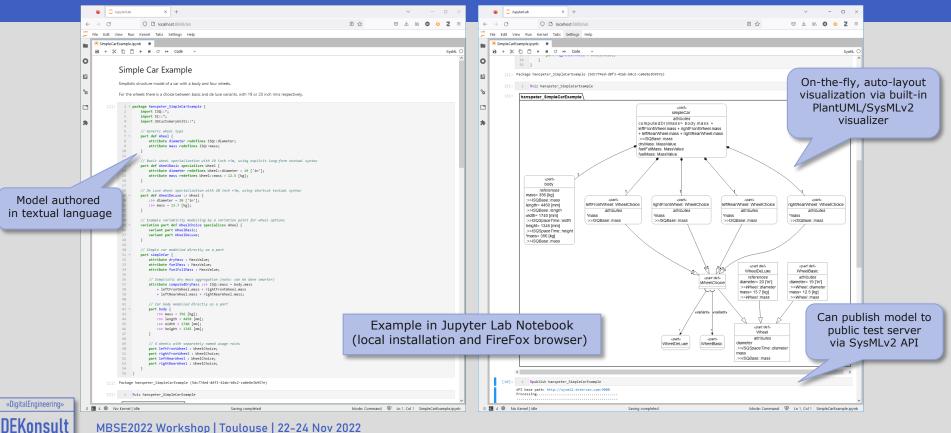
Note: non-	exhaustive list	
SysML v1	SysML v2 (textual syntax keywords)	SysML v2 (metamodel concepts)
part property block	part part def	PartUsage PartDefinition
value property value type	attribute attribute def	AttributeUsage AttributeDefinition
proxy port interface block	port port def	PortUsage PortDefinition
action activity	action action def	ActionUsage ActionDefinition
state state machine	state state def	StateUsage StateDefinition
constraint property constraint block	constraint constraint def	ConstraintUsage ConstraintDefinition
requirement	requirement requirement def	RequirementUsage RequirementDefinition
connector association block	connection connection def interface interface def	ConnectionUsage ConnectionDefinition InterfaceUsage InterfaceDefinition
use case	use case use case def	UseCaseUsage UseCaseDefinition

- Structure, behavior decomposition, type specialisation are fully regularised
- Consistent pattern of Usage and Definition for any concept that can be 'typed'

Source: Intro to the SysML v2 Language-Graphical Notation on GitHub

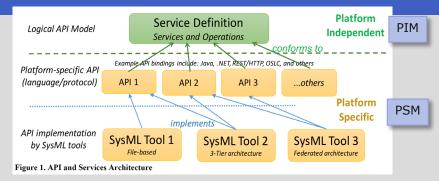
SysML v2 – Key Concepts and Innovations

- Powerful textual language alongside graphical language
- Extensible Model Libraries (M1) rather than profiles with stereotypes (M2)
- "Usage-Focused" modelling approach
 - Makes modelling deeply-nested decomposition natural, and much easier than in v1
 - SysML v2 still supports "Definition-Oriented" approach to achieve modularity when needed
- Very sophisticated (smart) package import and namespacing built into language
- 4D modelling of an object's life and spatial extent as Occurrences & Snapshots
 - Included comprehensive, formal models of portions of life/extent, temporal logic, spatial topology
- Support for variation points and variants, at any level
 - Enables PLE, product configurations, design alternatives, options, trade-offs, ...
- Modelling of Individuals
 - E.g., for serial-numbered items, 'digital twins', analysis/simulation executions



SysML v2 – Key Concepts and Innovations (cont'd)

- Integrated behaviour modelling: action control flow, state machines, sequences
 - Sync / async, serial / concurrent, signals, messages, events, aligned with ITU MSC
- Regularised specification of analysis or simulation cases, verification cases, use cases
 - Support for reusable calculations (calc's: similar to math / software functions)
- Comprehensive set of extensible domain libraries
 - Mathematical, logical, utility functions, integrated with textual expression language
 - Quantities, Units, Scales and Quantity Dimensions (full ISO/IEC 80000 "SI", US Customary)
 - Time & Clocks, State-Space Representation, Basic Geometry
- Standardized, modern API & Services for interoperability and fine-grained access
 - JSON and XMI object serialization
- Improved, flexible Viewpoints & Views aligned with ISO/IEC/IEEE 42010
 - ISO/IEC/IEEE 42010 "Software, systems and enterprise Architecture description"



Pilot Implementations Try-out with Eclipse IDE or Jupyter Lab Notebook

MBSE2022 Workshop | Toulouse | 22-24 Nov 2022

API & Services Working pilot implementations

- Two current pilot API (PSM) implementations
 - HTTP/REST API

«DigitalEngineering»

DEKonsult

- Conforms to OpenAPI spec v3.1, (<u>https://www.openapis.org/</u>)
- Contains full discoverable JSONSchema of SysML v2 metamodel
- Uses JSON or JSON-LD to serialize objects
- Provides paging and storable queries (to retrieve partial object graphs)
- Publicly accessible pilot server supports branching and tagging
- Java and Python class libraries to facilitate client development
- OSLC (Open Services for Lifecycle Collaboration)
 - Maps PIM concepts to OSLC resources / resource shapes
 - Uses JSON-LD to serialize objects
- Conformance Test Suite in Annex A of API & Services Spec

Public test server C JupyterLab × sysml2-sst.intercax.com:9000/docs/ × + $\leftarrow \rightarrow C$ ○ 👌 sysml2-sst.intercax.com:9000/docs/#get-/projects 52 C) 🥝 Z ≡ openapi-sans-schemas.ison ç _ م SysML v2 API and Services 20.0 Download OpenAPI spec View OpenAPI spec (New Tab) REST/HTTP platform specific model (PSM) for the SysML v2 API Expand all | Collapse all sections GET /projects Get projects REQUEST RESPONSE default **QUERY-STRING PARAMETERS** page[after] EXAMPLE SCHEMA Page after page[before] Page before "@id": "3fa85f64-5717-4562-b3fc-2c963f66afa6", "@type": "Project". page[size] "created": "1970-01-01T00:00:00.000Z", "defaultBranch": { Page size "@id": "3fa85f64-5717-4562-b3fc-2c963f66afa6" API Server http://sysml2-sst.intercax.com:9000 FILL EXAMPLE CLEAR "description": "string". Authentication Not Required "name": "string" POST /projects GET /projects/{projectId} PUT /projects/{projectId} DELETE /projects/{projectId}

MBSE2022 Workshop | Toulouse | 22-24 Nov 2022

Formal Transformation from SysML v1 to v2

Date: November 2022

- Annex C of the SysML Language Spec
- Fully explicit, machine readable mapping (or exclusion) of all SysML v1 concepts (v1.6 and v1.7) to v2
- Supported and validated by implementation of automated transformation using Eclipse Epsilon

OMG Systems Modeling Language TM
(SysML®)
Annex C: SysML v1 to SysML v2
Transformation

C.2.4.8 Requirements	
C.2.4.8.1 Overview	

Ч

Version 2.0 Release 2022-10

Submitted in response to Syste 2017-11-04) by:	ms Modeling Language (SysML®) v2 RFP	4
88Solutions Corporation	Lockheed Martin Corporation	6
Dassault Systèmes	MITRE	H
GfSE e.V.	Model Driven Solutions, Inc.	I
IBM	PTC	
INCOSE	Simula Research Laboratory AS	- F
Intercax LLC	Thematix Partners	T

Currently published as a separate document

SysML vl Concept	SysML v2 Concept	Mapping Class
AbstractRequirement		*** not specified yet ***
Сору		*** not specified yet ***
DeriveReqt		DeriveReqt_Mapping
Refine		Refine_Mapping
Requirement	RequirementDefinition	Requirement_Mapping
Satisfy	SatisfyRequirementUsage	Satisfy_Mapping
TestCase	VerificationCaseDefinition	TestCaseActivity_Mapping
Trace	Dependency	Trace_Mapping
Verify	RequirementVerificationMembership	Verify_Mapping

C.2.4.8.2 SysML v1 Requirements elements not mapped

Table 14. List of SysML v1 elements not mapped of this section

SysML vl Concept	Rationale
Сору	The copy relationship is not covered by SysML v2.

C.2.3.3.16 EmptyReturnParameterFeatureMembership_Mapping	
C.2.3.4 Generic Mappings to Systems	
C.2.3.4.1 GenericToActionUsage_Mapping	
C.2.3.4.2 GenericToActorMembership_Mapping	
C.2.3.4.3 GenericToAssignmentActionUsage_Mapping	
C.2.3.4.4 GenericToConnectionUsage_Mapping	
C.2.3.4.5 GenericToConjugatedPortDefinition_Mapping	
C.2.3.4.6 GenericToConjugatedPortTyping_Mapping	
C.2.3.4.7 GenericToConstraintDefinition_Mapping	
C.2.3.4.8 GenericToDefinition_Mapping	
C.2.3.4.9 GenericToEventOccurerenceUsage_Mapping	
C.2.3.4.10 GenericToItemDefinition_Mapping	
C.2.3.4.11 GenericToMetadataUsage_Mapping	
C.2.3.4.12 GenericToObjectiveMembership_Mapping	
C.2.3.4.13 GenericToOccurenceDefinition_Mapping	
C.2.3.4.14 GenericToOccurrenceUsage_Mapping	
C.2.3.4.15 GenericToPartUsage_Mapping	
C.2.3.4.16 GenericToPortConjugation_Mapping	
C.2.3.4.17 GenericToPortDefinition_Mapping	
C.2.3.4.18 GenericToReferenceUsage_Mapping	
C.2.3.4.19 GenericToRequirementUsage_Mapping	
C.2.3.4.20 GenericToStateUsage_Mapping	
C.2.3.4.21 GenericToSubjectMembership_Mapping	
C.2.3.4.22 GenericToUsage_Mapping	
C.2.4 SysML v1.7	
C.2.4.1 Overview	
C.2.4.2 Activities	
C.2.4.2.1 Overview.	
C.2.4.2.2 Mapping Specifications	
C.2.4.3 Allocations	
C.2.4.3.1 Overview	
C.2.4.3.2 Mapping Specifications	

Table 13. List of all Overview Mapping Specfications

Summary / Conclusions

- SysML v2 is on the final stretch to become an international standard
 - Easier-to-use, more regular and much more powerful than SysML v1
 - Very sophisticated textual language in addition to enhanced graphical notation
 - Much improved and semantically precise language extension support
 - Modern API with already two technology implementations: HTTP(S)/REST and OSLC
 - Finalisation in progress
 - Adoption of submission expected at OMG meeting March 2023, then OMG FTF, and v2.0 release early 2024
 - Many vendors are working on implementation ... and have officially announced support
 - Monthly public releases of the specifications, training material, open-source pilot tools and software libraries will continue
 - https://github.com/Systems-Modeling/SysML-v2-Release
 - https://github.com/Systems-Modeling/SysML-v2-Pilot-Implementation
 - https://github.com/Systems-Modeling/SysML-v2-API-Services

Acknowledgement: Many thanks to all my SST co-workers

for a great project

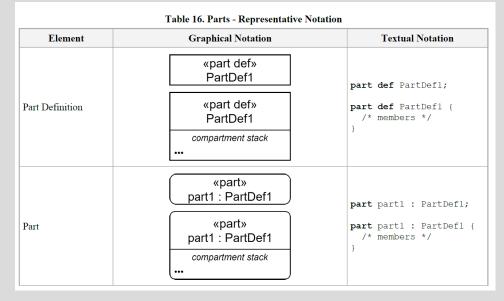
References

SysML v2 Submission Team (SST) public repositories on GitHub	https://github.com/Systems-Modeling/	
SysML v2 Release group on Google Groups – Discussions on releases and pilot software – Apply for Membership	https://groups.google.com/g/sysml-v2-release	
General information on MBSE across all industry sectors, INCOSE/OMG MBSE Wiki	http://www.omgwiki.org/MBSE/doku.php	
General information on the OMG Systems Modeling Language (SysML)	http://www.omgsysml.org	
Friedenthal, S., and R. Burkhart, "Evolving SysML and the System Modeling Environment to Support MBSE", INCOSE INSIGHT (August 2015 Volume 18 Issue 2, Pg 39-42)	link	
Ed Seidewitz, "SysML v2 and MBSE: The Next Ten Years", MODELS 2018 Conference, Copenhagen, Denmark, Oct 2018	link	
Hans Peter de Koning, "SysML Version 2 Approaching Industrial Use", MBSE2021 Workshop, 29 Sep 2021, Virtual Event	link	
Hans Peter de Koning, "Progress on SysML v2", 13th ESA Workshop on Avionics, Data, Control and Software Systems (ADCSS2019), Nov 2019, ESA/ESTEC	link	
Systems Modeling Language (SysML®) v2 Request For Proposal (RFP), OMG, December 2017	https://www.omg.org/cgi-bin/doc.cgi?ad/2017-12-2	
Systems Modeling Language (SysML [®]) v2 API and Services Request For Proposal (RFP), OMG, June 2018	https://www.omg.org/cgi-bin/doc.cgi?ad/2018-6-3	
Systems Modeling Language v1.6, OMG, November 2019	https://www.omg.org/spec/SysML	

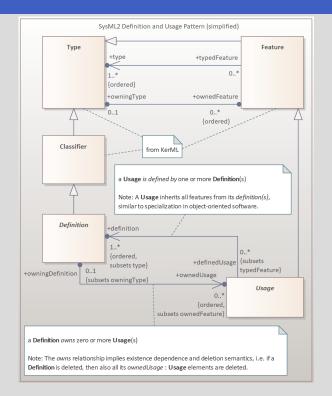
Why do I think SysML v2 is Important?

- It is the only open international standard that has the scale and vendor support to tackle the problem of fully digitalised systems engineering across industry sectors and organisations
- It has a powerful, modern, open API
 - Validated with two technology implementations (HTTP(S)/REST/OpenAPI and OSLC)
 - Much better than XMI file-based exchange and tool-specific APIs for many industrial use cases
- It is thoroughly based on formal semantics / first order logic
 - Initial mapping to RDF/OWL2 DL done, further work underway
 - Enables future use of OWL2 DL automated reasoners on SysML models
- It maps quite well on the (conceptual) data models in European Space
 - OSMoSE, ECSS E-TM-10-23, E-TM-10-25, EGS-CC, Arcadia/Capella, ITU SDL & MSC
 ... with the big advantage of being a major cross-industry international standard

Part 2 – Elaborations


The following slides provide further detail to the highlights in the main presentation. These slides could not be presented due to time constraints.

MBSE2022 Workshop | Toulouse | 22-24 Nov 2022


Key SysML v2 Concepts and Innovations (1 of 5)

- Full textual language alongside graphical language
 - With bi-directional conversion either way
 - Integrated support for expressions and constraints
- SysML Specification contains many examples
 - Besides all formal definitions
 - Fully elaborated Vehicle example model in Annex B

Key SysML v2 Concepts and Innovations (2 of 5)

- "Usage-Focused Modeling Approach"
 - Enables direct modeling of nested hierarchical decomposition
 - More natural and quicker for most end-users Similar to Capella and ViTech Genesys
 - Uses default Definitions (Types) in the background, without bothering the user
 - Enables redefinition directly at any deeply-nested Usage level
 - Override values, subset and/or narrow down multiplicities and/or types
 - Extend with additional structure, behaviour, attributes, ..., while keeping strong semantics
 - Resolves many cumbersome issues in SysML v1 (also in E-TM-10-25!)
 - Essential for modelling Individuals / Digital Twins
 - "Definition-Oriented Approach" still fully supported
 - For rigorously modular architectures, e.g., in product line libraries
 - Maintains compatibility with SysML v1's "Block-Definition-Oriented Approach"
- Usage is a 'first-class citizen'
 - Can declare a self-standing Usage (part, port, attribute, ...)
 - I.e. outside a particular (owning) Definition
 - Powerful pattern for re-usable libraries (e.g., Quantities and Units)

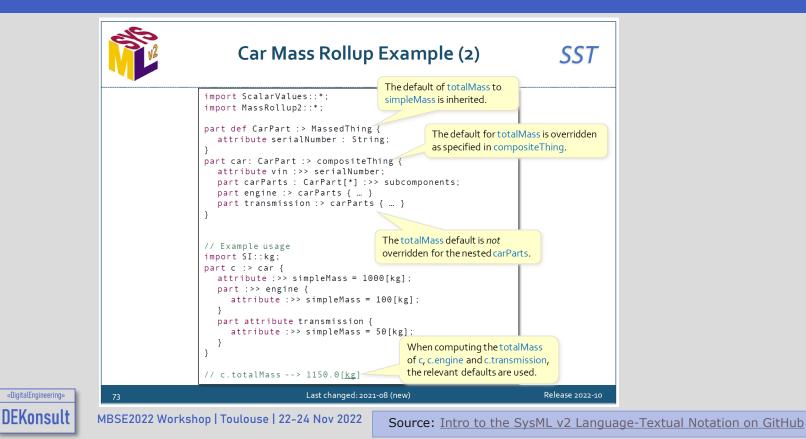
«DigitalEngineering»

Key SysML v2 Concepts and Innovations (3 of 5)

- Model Libraries (normative and informative) at user-model level (M1)
 - Rather than profiles with stereotypes at language metamodel level (M2)
 - Root-level Classifiers and Features with Semantics in Libraries make tailoring & extension much simpler and cleaner
- Extensible support for Viewpoints & Views (Work in Progress)
 - A Viewpoint is a kind of requirement that frames concern(s) of stakeholder(s) regarding information from a model
 - A View addresses the concerns expressed in a Viewpoint
 - Aligned with latest update of ISO/IEC/IEEE 42010 "Software, systems and enterprise Architecture description"
 - A View can specify conditions (what info to query from a model) and renderings
 - The Language Spec declares a minimum set of standardized views and renderings (subset compatible with SysML v1): Textual Notation, Element Table, Tree Diagram, Interconnection Diagram, Textual Rendering, Tabular Rendering, Graphical Rendering, ...
 - SysML v2 allows to combine different structure and behavior elements in single diagrams
- Standardized API & Services to access models / model repositories
 - Specification as Platform Independent Model (PIM) i.e. independent from implementation technology
 - Two full Platform Specific Model (PSM) API pilot implementations: HTTP/REST and OSLC
 - Built-in (Git-like) life cycle support with versioning, tagging, branching and merging
 - Orthogonal to KerML or SysML model can also be used for non-KerML/SysML models

Key SysML v2 Concepts and Innovations (4 of 5)

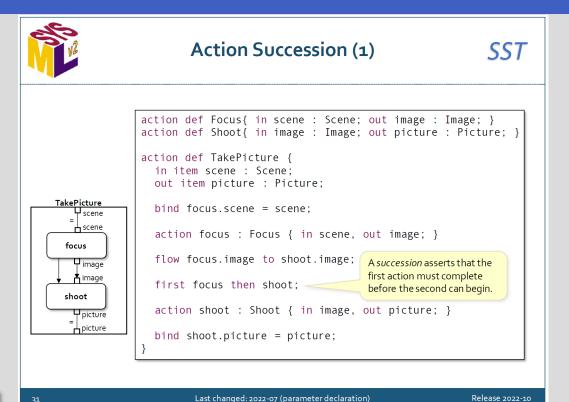
- Powerful, robust model for name-space and package management via imports
 - Handles circular imports
 - Support for 'smart packages' using XPath-like import queries
- Possibility to declare and use metadata
 - Similar to stereotypes in UML and SysML v1 but now integrated in user language
- Specification of variability via variation points and variants
 - In support of PLE, product configurations, design alternatives, options, trade-offs, ...
 - Can add constraints to declare valid / invalid combinations
- Proper concept of modelling Individuals (distinguished from M0 instances)
 - E.g., to represent actual serial-numbered items, 'digital twins', analysis/simulation executions
- Specification of analysis/simulation/verification cases, calculations
 - Case, execution and results, including linking specification model with external solvers
 - Comes with execution semantics / legal execution traces (Work in Progress)



Key SysML v2 Concepts and Innovations (5 of 5)

- Modelling object lifetimes and spatial extent as Occurrences and Snapshots
 - 4D spatio-temporal extent model and portions / time-slices thereof
 - 'Onto-behavior': rigorous modelling of time-dependent behaviour based on Allen's interval-based temporal logic: happens-before/during, succession, partial and total time ordering
- Support for synchronous & asynchronous messaging (Work in Progress)
 - Signals, required and provided interface ends (ports), events, messages, ...
 - Includes sequence diagram notation aligned with ITU MSC (Message Sequence Chart)
 - Validated with Service Oriented Architecture patterns
- Comprehensive set of extensible 'Domain Libraries' (largely done, some Work in Progress)
 - Mathematical, logical, programming functions integrated with textual expression language
 - Quantities, Units, Scales and Quantity Dimensions
 - Provides fully digitalized ISO/IEC 80000:2019 (ISQ & SI) as well as NIST SP-811 US Customary Units and CODATA constants
 - Supports scalar, vector and tensor quantities with automated unit/scale conversion
 - Supports coordinate systems and coordinate transformations
 - Time & Clocks, State-Space Representation, Basic Geometry (enveloping shapes, reference to CAD)

Example Textual Notation: Parts, Attributes, Quantities & Units, Redefinition, ...



Example Textual and Graphical Notation: Functional Behaviour Example (1 of 3)

Example Textual and Graphical Notation: Functional Behaviour Example (2 of 3)

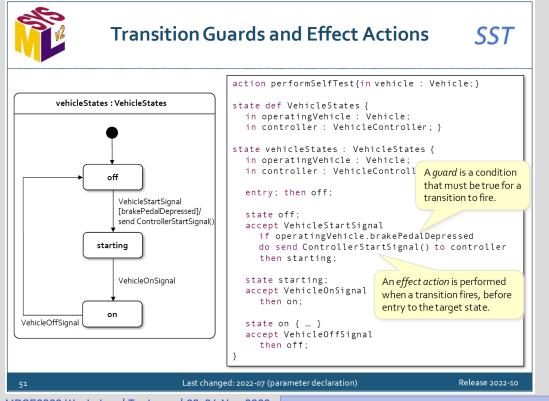
MBSE2022 Workshop | Toulouse | 22-24 Nov 2022

Source: Intro to the SysML v2 Language-Textual Notation on GitHub

Example Textual and Graphical Notation: Functional Behaviour Example (3 of 3)

	Action Succession (2)	SST
TakePicture scene scene focus wsuccessions image shoot picture picture	<pre>action def Focus{ in scene : Scene; out action def Shoot{ in image : Image; out action def TakePicture { in item scene : Scene; out item picture : Picture; bind focus.scene = scene; action focus : Focus { in scene; out succession flow focus.image to shoot. action shoot : Shoot { in image; out bind shoot.picture = picture; } </pre>	<pre>picture : Picture; } A succession flow requires the first action to finish producing its output before the second can begin consuming it. ima</pre>

Last changed: 2022-07 (parameter declaration)

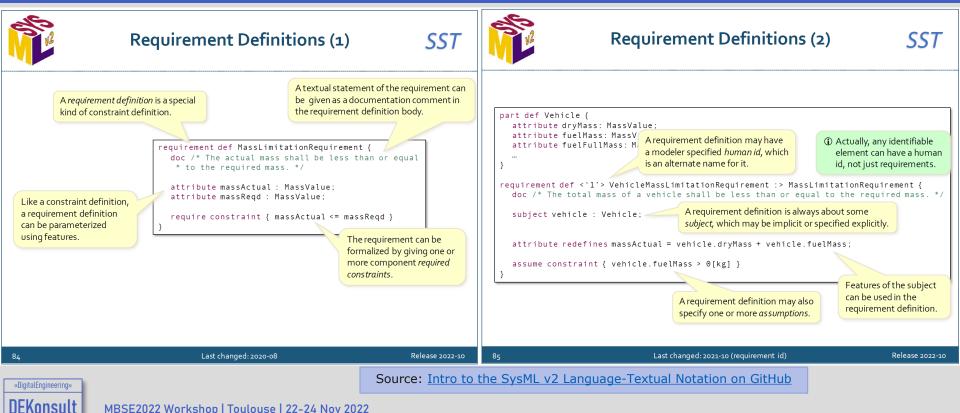


MBSE2022 Workshop | Toulouse | 22-24 Nov 2022

Source: Intro to the SysML v2 Language-Textual Notation on GitHub

Release 2022-10

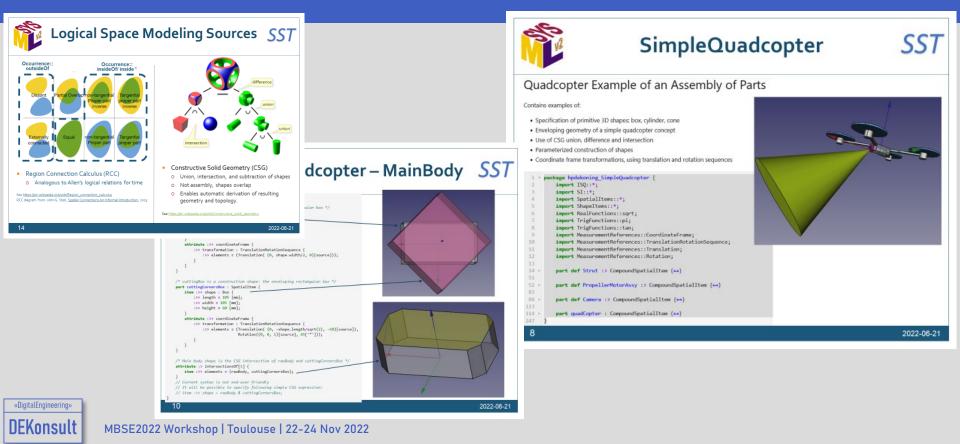
Example Textual and Graphical Notation: State machine with transition guards



«DigitalEngineering»

MBSE2022 Workshop | Toulouse | 22-24 Nov 2022 Source: Intro to the SysML v2 Language-Textual Notation on GitHub

Slide 28


Example Textual Notation: **Requirement with properties and constraints**

MBSE2022 Workshop | Toulouse | 22-24 Nov 2022

Slide 29

Support for Basic Geometry, Spatial Extent, Coordinate Frames

