

A vision on Engineering mid-term Challenges and Need for Tooling Support

Jean-luc.voirin@fr.thalesgroup.com

Scope: highly constrained, Trustable, Mission-Critical Solutions

Digital Identity (Thales example here) and Security Ground Transportation Defence and Security Space Aerospace Building a future we can all trust

Challenges in Mission-critical Engineering

4

Product.

Projects,

Branches

Branches

OPEN

Today most engineering assets are built, linked, exploited manually

How much time & resources to build and link all these data?

How to safely analyse the impact of changes?

How to update and verify?

How to keep the whole in coherence?

100,000+ engineering data & links elaborated, updated and verified in a few months???

Here is

Engineering
Digital Transformation
REVOLUTION!

7

Challenge #2: the wall of Complexity

How to adapt Organisations and Practices?

- Autonomy
- Human-Machine Teaming
- Systems of Systems Urbanisation
- Social, environmental & ethical Responsibility
- -

- « Do more, do it faster, **but** Still do it well »
- Team with Partners, suppliers...

New Constraints with more Stakeholders

Non-Functional Dependency Complexity More flexible, intelligent, low-cost, **but** still trustable, real-time and embedded

- Safety+Security+Cyber,
- IT Vs OT,
- HPC Vs SWaP.
- Cloud Vs CyberSec,
- Customer first vs PLE,
- Al Vs Trust.
- Cost Vs Quality of Service,
- **-** ...

New Disciplines & <u>diverging</u> Constraints

New Capabilities

IT/OT: information/operational Technologies; HPC: High Performance Computing; SWaP: Size Weight & Power; PLE: Product Line Engineering; AI: Artificial Intelligence; SW: Software; COTS; commercial off-the-shelf

New Use Cases

Challenge #3: Design for Trust

Need for Trust Assurance grows heavily

- Safety+Security+Cyber, Human-Machine Teaming, Autonomy, SoS, ESR...

How to ensure Trust by construction and justify/prove it SW / HW Eng.

Trust Assurance requires certified/justifiable

Continuity,

Coherency,

Consistency,

Completeness,

Impact Analysis

between practices and between engineering data

on the full Lifecycle

Mastering Feedback with Operations is Key

Evolutions in Engineering Practices

Practices are less and less compatible with hierarchical Flow

Goal-driven Concurrent & collaborative elaboration of Solution Assets

Agile, reactive Engineering: global compromise in constant evolution

System Engineering
Tooling Support
Key Enablers & Show Stoppers

Key Enabler #1: a true workflow- & data-driven Engineering Support

- > Collaborative Processes and workflows drive engineering
- > They traverse all engineering disciplines, using seamless accessible & shared data
- Constant monitoring/analytics of data uses and manipulations ensures consistency

Key Enabler #2: Guiding, assisting, justifying Activities and Results

Building automated digital Workflows

Guiding Users in applying Processes & Workflows

Monitoring Engineering Activities & Outcomes

Assisting Quality Assurance & Cooperation

Building justifications for Trust

Key Enabler #3: Impact Analysis and automation Services

Building a future we can all trust

Show Stopper #1: Silos in Engineering Data & Tools

State-of-the-art of legacy engineering environments tool vendors

Most engineering tools manage **their own data**, delivering benefit in creating & exploiting them...

...but this heavily hampers data-driven engineering, data continuity & coherency

Show Stopper #2: Semantic Silos on manually built/linked Data

Notional View of required Eng. Tooling Support Architecture

Conclusion

Moving from Today...

Towards Tomorrow

Among all, master **Solution**

Among all, master **Need Satisfaction**

Focus on individual Tasks

Focus on collective Goals

Sequential lifecycles on stabilized Need

Agile Collaboration, **reactive** to events in **short loops**, up to disposal

Delegation-based Practices & Organisations in **Silos**

Cooperative **multi-discipline Workflows**, driven by common Goals

Siloed Tools, each managing separate Data

Continuum of cooperative Workflows on **seamlessly shared** Data

EE* formalizes Engineering Data

EE* assists in Data **building & Analytics**, and **automates** tedious Tasks

*EE: Engineering Environment

Building a future we can all trust