

JUICE Jupiter Icy Moons Explorer

CaC Lessons Learned Space Cost Engineering conference - SCE2022

Manuela Baroni, JUICE AIT & Launcher Interface Engineer, , ESA / ESTEC 15/09/2022

ESA UNCLASSIFIED - For Official Use

*

- JUICE background and current status
- Areas underestimated by Industry & ESA
- Schedule and Financial margins management
- Improvement of estimates in early phases
- Cost & schedule control during implementation

Solar System and Astrophysics Fleet

"What are the conditions for planet formation and the emergence of life?"

"How does the Solar System work?"

Elements of the JUICE mission

ESA UNCLASSIFIED - For Official Us

Overall Mission Profile

Launch	April 2023
Interplanetary transfer	≅ 8 years
Juniter orbit insertion	July 2031
2 Europa flybys	July 2032
Jupiter high-latitude phase	Aug 2032-Aug 2033
Transfer to Ganymede	Nov 2033-Nov 2034
Ganymede orbit insertion	December 2034
Ganymede elliptical orbit/5000 km circular orbit	Dec 2034/May 2035
Ganymede 500 km Circular Orbit	May/Sept 2035
End of mission	Sep 2035

Spacecraft configuration

ESA UNCLASSIFIED - For Official Use

Challenges

Operationals:

Navigation

Planetary protection

Power and data volume for the instruments

Programmatics:

Launcher COVID-19 Transportation

Human challenges

Master Schedule

Status	Date: 30 September 2017				JU	ICE	Pr	roje	ect	Re	efe	erei	nce	Μ	ast	ter	Sc	he	du	le																Rev	21
ID	Task Name			20)15			201	16			2	2017			2	2018				201	9			2	2020				2021	1			20	22		
		4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	L	2	3	4	1	2	3	4	1	1	2	3	4	1	2	3	4	1
1	Contract KO	C	ontra	ct KO	♦ 28	8/07/1	15																														
2	Phase B2		Ph	ase B2	2 🎿	, 7m						01/	03/17	1																							
3	SRR					SRF	۶ 💊	01/0	3/16	5																											
4	PDR									PI	DR	01/	/03/17	7																							
5	Phase C									Phas	e C	<u>Zy</u> _								<mark>ه ر</mark>	1/03	/19															
6	Spacecraft TDM Thermal Balance Test												27/	/01/1	8 🚃	10/	/03/1	18																			
7	Instrument EM integration and test														25/	/07/1	18 💼			B 0	1/03	/19															
8	CDR																	(CDR	0	01/03	/19															
9	Phase D																	Pha	se D	2	y, 6n	1									0	1/09	/21				
10	Instrument FM Integration																	(01/0	6/1	9 💼				26	/03/	20										
11	Instrument Functional Tests																					0	1/04	1/20		29/0	4/20										
12	Spacecraft Functional Tests																					2	7/03	/20		25	6/06/	20									
13	Conducted EMC Test													-									01	/06,	/20	12	/06/2	20									
14	TB/TV Test			1		-					1		-		- /								1	8/06	5/20		21/07	7/20									
15	Magnetic/ Radiated EMC Tests		N																					0	2/09	/20	es 1	16/1	0/20								
16	Functional/ Performances/ Physical properties Tests																								09	9/11/	20 🛛		26/0	01/2	1						
17	Solar Array integration and deployment																									1	6/02	/21	02	2/03/	/21						
18	Vibration/Acoustic																										12/0	3/21	L 💼	10	/05/2	21					
19	Final Tests																										2	0/0	5/21		02/	/08/2	21				
20	S/C preparation for shipment																											1	13/08	8/21	19	/08/	21				
21	FAR																													FAF	0夲 ۱	01/09	9/21				
22	Margin																												01/0	09/2	1 💑	m	 0	1/03	/22		
23	Launch Campaign																														01/	03/2	2 诸	m_2	0/05/	/22	
24	Launch																															La	unch	2	0/05	/22	
25	Launch Window																															20/	05/22	2 ず	10/06	5/22	
26																																					
27	Instrument STM delivery													15	/05/	18 🍙							16/	09/1	9												
28	Instrument EM delivery													06/0	4/18	3			20/	11/	18																
29	Instrument FM delivery																	01/	04/1	9 🛛						0	3/07,	/20									

JUICE in Summer 2021 @ ESTEC, TB/TV test campaign in the LSS

JUICE in spring 2022 @ Airbus Toulouse, EMC test campaign

JUICE in summer 2022, @ Airbus Toulouse, Mechanical & Acoustic test campaign

JUICE in August 2022, @ Airbus Toulouse, Magnetic test campaign

JUICE Financial overview

- In 2014 the JUICE mission was adopted by SPC, with a CaC for launch in 2022
- The CaC included a Project Level contingency of about 16%
- SC Development Prime contract structure:
 - Core Team
 - Subcontractors consortium (in Best Practices), "Lean Prime" with Subsystems
 - Management Reserve, under ESA control (to cover: consortium build up underestimations, additional activities / manpower, Class B CCNs, schedule delays)
 - Risk Sharing Schemes
 - Phase E1 financial provision
- Scientific instruments delivered as CFIs (not direct ESA or Prime contract)

JUICE Financial overview: evolution

- The CaC remained stable until 2021, when launch got delayed from 2022 to 2023 due to:
 - COVID-19 Pandemic impacts
 - Scientific instruments delays (CFIs)
- Overall CaC increase: about 4%
- SC Development contract
 - Core Team → + 40% (additional activities, teams strengthening, schedule delay...)
 - Subcontractors consortium → + 15% (mainly Class B changes, Industrial Consortium overrun at Price Conversion was minor for JUICE)
 - Above covered by the Management Reserve (increased with conditions / incentives)
 - Class A CCNs: + 30 % of contract value (70% of which Instruments driven)
 - Phase E1 financial provision → final price almost doubled (mainly due to transport)
- Scientific instruments exceptional support → 5% CaC

Schedule / Financial increase drivers (1/2)

Typical areas/items/activities underestimated by Industry & ESA

- Industrial manpower underestimation @ proposal:
 - During development (Payload, Engineering, Subsystems and 3rd tier Subs management, AIT)
 - No manpower planned during schedule margin
- General attempts to make price competitive
- Additional Industrial / Prime activities & schedule elongations due to Instruments (e.g. I/F changes, tests, debugging...) until the end of AIT phase (CCNs A due to PL > 70% of the total Class A CCNs)
- CPPA (Coordinated Parts Procurement Agent) components
- Changes on industrial consortium due to geo dis constraints
- Unknown space environments for Scientific missions
- Underestimation of TRL level, e.g. rarely a "re-flight" is a rebuild, adaptations could be major
- Some Technology Preparatory activities not concluded at Phase B2 KO phase, and taken over within the industrial Development contract
- Underestimation of Co-Engineering phases duration
- Phase E1 "Financial Provision"
- Risks of moderate / high probability and moderate impact

Schedule / Financial increase drivers (2/2)

Unforeseen events with significant cost impacts

- Issue external to Project
- Covid pandemic
- War & Geo political panorama
- Political/ programmatics imposed priorities
- Launchers availability
- Components shortage
- SCI programme level constraints, e.g. cash disbursement
- Escalations (for FPV contracts, also FFPs)

o Generally Low probability – High Impact risks or "unknown unknowns"

Schedule Margins

- Schedule driven by launch window → + 1 year due to fixed windows, although a reasonable margin was initially included
- Schedule margins:
 - Should be visibly and savvily allocated, and tracked
 - Minor allocation during design & procurement phase, to keep the pressure and avoid shrinking the AIT phase beyond feasibility
 - Reasonable and justified during development phase (e.g. until CDR), again keeping pressure
 - Short intervals margins during AIV / AIT phase, to allow flexibility, AIT flow reshuffling, extra activities etc. without eroding the final contingency
 - A major margin before FAR
- A Must: every announced delay shall come with a recovery plan
- Limiting schedule delays \rightarrow costs overruns are naturally reduced

Financial Margins

- Two main reserves:
 - A financial Contingency at Project level, to cover additional internal ESA costs, Class A CCNs, any other overrun / extra costs / risk mitigations actions
 - An Industrial Management Reserve under ESA control (under the Prime contract + MR at Subsystem level) to cover:
 - Risk mitigation actions / materialised risks impacts
 - o Additional manpower, e.g. reinforcement of teams (engineering, AIT...), shift / weekend work, schedule delays
 - o Additional activities, e.g. investigations, tests, additional models, HW, GSE, SW versions, integration & test lines
 - Activities for the whole schedule margin contingency (e.g. industrial "marching army")
 - Class B CCNs (changes Prime vs Subs)
 - Industrial Consortium overrun at Price Conversion
 - The idea is for the Prime PM to have enough "freedom" to find solutions and invest without impacting the schedule
 - Partially released as incentives upon technical achievements, providing to the Prime PM "leverage" vis-a-vis their management to "buy" priorities e.g. from the supply chain, access to internal facilities, to get valuable manpower
- Management reserves should be sized based on Risk Register and the remainder cross checked with the updated RR throughout the development phase
- Structured incentives scheme, mainly based on technical achievement (see above)

Early Estimates improvement

- Benchmarks:
 - Costs of Units/ Equipment, as well as Primes from As-Run project, and not from proposals, deltas can be major
 - ESA and Industry manpower profile from "as run" (e.g. no dip between CDR / FAR and Launch Campaign, consider AIT phase in double shift)
 - Schedule of missions / project phases / instruments benchmarks from "as-run", and not proposals
 - An As-Run costs unified repository is currently not available, a schedule repository is in the making
- Analysis of companies performances via the "SET" tool, to understand experience, issues and trends
- Improvement of Risk Register content of the early phases (e.g. including programmatic risks) to set aside suitable contingencies and possibly reserve "Programme- Level" contingencies (e.g. for low probability high impact risks)
- Challenge of the declared TRL level, increase contingency allocations for low TRLs (high probability TBD impact risks)
- The CaC from TEC-SYC to be developed together with, or at least reviewed by, experienced Controllers from the Project Development Phase
- Schedule preparation shall be driven by technical analysis and not by higher-level programmatic constraints
- The master schedule shall be developed by Schedule officers with project experience
- To develop an analysis to track initial declared TRLs level vs. final cost increase / development time, to be used as benchmark (tool not existing, as far as I know)
- In reviews include a major umber of experts from Projects in development, beside TEC experts.

ESA UNCWatch outofor. Use the conspiracy of optimism !

Cost & schedule control during implementation

- Mind set, making "On Cost, On Time and On Quality" a priority
- Each and every announced delay shall come with recovery action throughout the consortium and the Instruments': cost control is also achieved via schedule control !
- "Pro-Active" controlling by the Project Control Team, beside mere accountancy
- Systematic and deep Schedule & Margins management (e.g. schedule trendcharts, financial contingencies trendcharts, KPIs, e.g. Project contingencies, Management Reserves depletions, other reserves...), schedule training of Subs and Payload teams
- Financial support to CFIs, e.g.:
 - CPPA, other procurements to give schedule insights and take over some level of control (e.g. test campaign in Estec)
 - Common HW development , e.g. SC Interface, Simulators
 - In situ personnel
- Increase management / invest resources to lower performers Subs
- Continuous exchange throughout the consortium (e.g. yearly industry days to keep all up to speed status, drivers...), open and systematic discussion with Prime
- Flexible AIT schedule, that allows continuous reshuffling and parallelisation requires creativity and thinking out of the box, also challenging the *"status quo"*
- Initial Management Reserve based on solid and extended risk register
- Solid and extended Incentive scheme throughout the consortium (e.g. "bonus / malus" schemes, that get applied !)

Anie 4 Miestones Trend Chart : Spacecraft

THANKS!

Follow us:

sci.esa.int/juice twitter.com/ESA_JUICE

ESA UNCLASSIFIED - For Official Use

European Space Agency

÷