« Design to Cost »

Overview

666 Perfection is achieved, not when there is nothing more to add, but when there is nothing left to take away.

Antoine de Saint-Exupery

Contacts Cost House :

Igor Le Pivert – ilepivert@cost-house.com

Key concepts

- Implementation
- Case studies and Stories

Training

Introduction

Design to thrive

 From startups and venture capitalists to state funded programs (civil or military), space industry presents major **opportunities** and dreams ...

... but also **fierce competition** and major setbacks.

✓ Technical and engineering dimensions still rule ...

... but value proposition and **cost effectiveness** now play an equal or higher role.

Design-to-Cost is essential to all players looking to survive and thrive ...

... because ENGINEERING, COST and stakeholder VALUE are equally important

A paradigm change in product development process

"Design to Cost" places voice of customer at the center of product or service development. Implementing D2C reverses common development process : technical solutions are sought to meet market expectations vs setting cost based on technical constraints

Standard development projects

" Design to Cost "

Optimization rather than cost killing ...

• Competitiveness lies in right balance between cost and value.

Value

- Functions
- Performance
- Safety
- Brand
- Price
- Differentiators

- Direct costs
- Full costs
- TCO (Total Cost of Ownership)
- Recurring Costs / Non-Recurring Costs

Design To Cost is about finding the right balance between cost and value

Continuous process involving all actors, at every stage of the project

Multi-skill team

Stakeholders

• To characterize all needs and constraints and to reduce risk, a cross-functional team is recommended :

• All stakeholders (including suppliers) must be involved from start.

Early involvement

- Classic project management for product/service development only allows to track deviations
- DTC requires early involvement of all stakeholders to define requirements. They remain involved all along to find solutions to match requirements within cost and time perimeters
- Early integration of potential suppliers is key to DTC success

	Need	General specs	Detailed specs	RFQ	Production	Testing	Use
Marketing							
Business Unit							
Engineering (internal)							
Engineering (external)							
Purchasing	<						
Suppliers							
Users / Operators							

© Cost House

Key concepts

- Implementation
- Case studies and Stories

Training

Deployment

steps to success

Prerequisites

Define cost and design start point

Technical optimization

- Technical optimization relies on detailed, line-by-line analysis of components or groups of components ...
 - ... with the goal of understanding main cost drivers, thus:
 - Finding improvement areas with highest potential (material choice, dimensions, process, redesign,...)
 - Finding solutions to optimize cost/performance ratio of a component or sub-assembly
- 2 different methods can be used to estimate cost of components
 - Analytic : based on full breakdown of parts, material and labor
- Parametric : based on statistics applied to historical data in order to define key cost drivers and associated cost models

 $Price = F(x, y, z \dots)$

x ; weight y : power z : country of origin Unit_price kEURO 12/20

Technical optimization

- Asking and answering the following questions can help to find improvement ideas
 - Product's or service's design
 - What is the component or task used for ? Is it needed ?
 - Can we find similar components or tasks in other products or services (internally or externally) ? What is their cost ? Why is their cost different ?
 - Materials
 - Are these materials and these dimensions standard (internally, for the industry) ?
 - Can we find more standard materials with similar performance ?
 - Is it possible to reduce raw weight (lower scrap, recycling, lower net weight, ...)?
 - Labor
 - What causes need for rework ?
 - Is it worth automating ?
 - Do certain operations require specific skills ?
 - Process
 - Is this technology or process under control/well known in the industry ?
 - Are dimensions compatible with standard tools and processes ?
 - Are tolerances consistent with technologies used or available skills ?

Technical optimization

- Cost optimizing solutions depend on the scope and perimeter which are looked at, eg
 - non-recurring vs recurring costs,
 - capital investment vs operations cost
- Typical P&L cost models used to run a company are not meant to embrace the complexity needed for project level decision making.
- This is why specific, more reliable and real-life oriented models should be defined and used.

Functional optimization

- Functional optimization aims at challenging existing solutions based on customer needs.
- It relies on 2 key elements
 - Customer need, specified in functions and performance levels (functional analysis)
 - Cost/value ratio analysis (value analysis)

System optimization

- System optimization is a 3rd technique to find improvement solutions.
- System models, however, are not always possible or worth the efforts. They can be considered:
 - When technical optimization and value analysis did not allow proper level of savings
 - When existing solutions are very constrained or already very simple
- System optimization technique is based on the principle that the sum of local optimums is not always the optimum.
- For system optimization you need to model:
 - Interactions between sub-assemblies
 - Cost behavior of all sub-assemblies

Key concepts

- Implementation
- Case studies and Stories

Training

Paradigm shift in satellite design/value

Sell bandwidth instead of transponders

- Renewal of satellites requires much higher performance/cost levels
- Technical and environmental environment are much more constrained
- Increased competition from newcomers with alternate technologies

Improvement actions

- Breakdown of complete costs of a program (from design to launch)
- Identification of main cost drivers (project costs, studies, development, manufacturing, components, insurance, launch)
- Review of value / billing model
- Analysis of accessible, fixed/variable, recurring/non-recurring costs
- Modeling of main sub-assemblies' technical and economic dependencies
- Identification of areas for improvement
- Cooperation with industrial partners
- Qualification and ranking of improvement ideas

Results

- New disruptive design leading to substantial cost savings:
 - service performance instead of technical specifications
 - design for more variable cost of platform and launch
 - paradigm shift in redundancy management
 - optimization of design and engineering time (soft and hard) between recurring and non-recurring

Cost

Redesign of microsat dispenser

Challenging cost models to find cost saving ideas

- Starting point
 - Complex, multiple interface sub-assembly to combine fastening, launcher structural integrity and swift release mechanism
 - Very low production volume

Improvement actions (2 month rush)

- Team effort with purchasing, cost estimators, design engineers, manufacturing
- Cost breakdown at part level (material/purchased parts, labor, assembly, other)
- Identification of main cost drivers of highest € contributors
- Quick review of low € parts
- Performance vs cost estimates
- Proposal of improvement options

Results

- Challenge of hourly rates
- Labor cost optimization (machining)
- Integration of small parts

