Environmental sustainability of future proposed space activities

Loïs Miraux^{a,*}, Andrew Ross Wilson^{a,b}, Guillermo J. Dominguez Calabuig^{a,c}

^a Space Generation Advisory Council, 16 Rue Dupetit-Thouars, 75003, Paris, France

^b Aerospace Centre of Excellence, Department of Mechanical & Aerospace Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK

° Space Launcher System Analysis (SART), German Aerospace Center (DLR), Germany

ESA Clean Space Industry Days 12/10/2022

Context & Objectives

1. New paradigm enabling the development of new space activities

... leading to heightened promises and expectations that shape our shared narratives of the future

Large constellations of satellites Global broadband connectivity for all!

Space tourism Space is for all humanity!

Lunar missions We are going back there to stay and prepare Mars!

Database

Space-based solar power Clean energy to help meet our climate targets!

Earth-to-Earth transportation Everywhere on Earth in under an hour!

Mars colonisation Planet B!

2. Previous research on the environmental impacts of space activities

...leading to serious doubts on the industry's capability to live up to its promises

Miraux, L. (2021). Environmental limits to the space sector's growth. *Science of The Total Environment*, *806*, 150862. https://doi.org/10.1016/j.scitotenv.2021.150862

3. Space-specific Life Cycle Sustainability Assessment database being developed

...making possible an independent, rough order of magnitude assessment of the impacts of these activities

Wilson, A. R. (2019). Advanced methods of life cycle assessment for space systems. https://stax.strath.ac.uk/concern/theses/ri430454t

Evaluation of the environmental impacts of future proposed space projects

- LCA framework
- Aligned with global sustainability targets timeline (2050)
- Based on real proposals and space systems
- Focusing on large-scale activities having the potential to drive impacts
- Thought experiment, not predictive
- Results analyzed with a "systems lens"

		BASELINE	CONSTELLATIONS	SPACE TOURISM	MOON MISSIONS	SBSP	EARTH-TO-EARTH TRANSPORTATION	MARS COLONISATI
	¹ Flow indicator							
	Design activities	Х	Х	Х	Х	Х	Х	Х
LAUNCH	Production of components	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SEGMENT	Assembly, Integration and Testing	x	х	Х	Х	Х	Х	Х
	Production of propellants	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Launch campaigns	Х	Х	Х	Х	Х	Х	Х
Ý ♥ `	Launch events	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Recovery operations and refurbishment	x	х	Х	Х	Х	х	Х
	Disposal	FI ¹	FI	FI	FI	FI	FI	FI
	Decime activities	Y	V		Y	×		
SPACE		^	~		A X	~		
SEGMENT	Accomply Integration and	\checkmark	\checkmark	N/A	Х	Х	N/A	N/A
	Testing	Х	Х		Х	Х		
	Production of propellants	\checkmark	\checkmark		Х	Х		
\\$``¥	Use phase	FI	FI	Х	Х	Х	Х	Х
	Disposal	FI	FI	N/A	N/A	N/A	N/A	N/A
GROUND SEGMENT	N	Х	Х	Х	Х	Х	Х	Х

Environmental sustainability of future proposed space activities – ESA Clean Space Industry Days 2022

Ν

Methodology

Modeling of space-specific phases

PHASE	RELEVANT PHYSICAL QUANTITY / PHENOMENON	CHARACTERISATION IN THIS STUDY					
	N2, CO2, CO, H2 emissions	Ground-based					
Launch	H2O emissions	CC: aviation-based					
	NOx emissions	AA, PM, PO: ground-based CC: aviation-based OD: stratosphere-based estimate					
	ClOx, HOx, HCl emissions	OD: stratosphere-based estimate					
	Al2O3 emissions	Flow indicator					
	Black carbon emissions	Flow indicator					
Orbit	Number of satellites in orbit	Flow indicator					
	Number of operational satellites in orbit	Flow indicator					
	Mass of rocket bodies re-entering	Flow indicator					
Polontry	Mass of satellites re-entering	Flow indicator					
Re-entry	Mass of aluminium (and Al2O3) emitted upon re-entry	Flow indicator					
	NOx produced in shock waves	Same as launch (sensitivity)					
Environmental sustaina	ability of future proposed space activities – ESA Clean Space Industry Days 2022	CC = Climate Change AA = Air Acidification PM = Particulate Matter PO = Photochemical Oxidation OD = Ozone Depletion					

Baseline activities

= 2021 space activities excluding constellations and tourism

- LAUNCH SEGMENT:
- Actual launchers
- 112/133 launches covered but close to 100% payload mass

- SPACE SEGMENT:
- Proxy satellites
- 5 spacecraft models / mission (1:1 mass ratio)
- Assumed to remain constant over 2021-2050 period (for reference only)

	AIR ACIDIFICATION [kg SO2eq]	CLIMATE CHANGE [kgCO2eq]	OZONE DEPLETION [kg CFC-11eq]	RESOURCE DEPLETION [kg Sbeq]	N AL2O3 EMISSIONS [kg]	BC EMISSIONS [kg]
TOTAL BASELINE	2.7E+06	4.3E+08	8.1E+05	1.4E+05	1.5E+06	1.6E+05
ANNUAL GLOBAL IMPACTS (AGIs)	0.022%	0.001%	0.482%	0.031%		diative forcing of 2009
PLANETARY BOUNDARIES (PBs)	0.008%	0.006%	0.151%	_	(based on Ross et	al. findings)

Constellations: modeling

Plans of 10 heaviest constellations

~92,000 satellites (36k tons) when fully deployed

Constellations: results

Earth

Space

Satellites

112,000 in orbit in 2050 15,000/yr placed in orbit after 2040 <u>Re-entries (after 2040)</u> 16kt objects/yr 3.5kt aluminium/yr (x27 natural level)

Other activities: modeling

Suborbital

Companies: Virgin Galactic and Blue Origin Scenarios: 3 to 11 daily launches per company by 2050

Orbital

Company: SpaceX Scenarios: 2 to 8 monthly launch (50-50% Falcon 9 / Starship)

Commercial Lunar Payload Services Lunar Gateway Program

International Lunar Research Station

Other missions

SBSP

Space Energy Initiative

25x2GW by 2050 569 Starship launches

1GW by 2050 100 LM9 launches

Other activities: results

Evolution of the impacts on climate change

Activities responsibilities in cumulative 2021-2050 impacts

80%

100%

Space tourism and environmental justice

Environmental footprints of passengers in typical space travel flights

No or simplified account of high-altitude effects of launch emissions

Environmental impacts of the planned space tourism industry*

accounting for high-altitude effects of launch emissions (Ryan et al., 2022)

*daily suborbital flights + weekly orbital flights

 \approx 1/10th of global aviation radiative forcing after 3 years

Arctic ozone decline undermining progress made by the Montreal Protocol after 10 years

Environmental sustainability of future proposed space activities – ESA Clean Space Industry Days 2022

Equivalent EU-27 citizen

over 1 year

EARTH-TO-EARTH

TRANSPORTATION

Starship, 1,000 passengers / flight
Method 1: 25% of supersonic aviation market
Method 2: 25% of long-haul aviation market (>10h)
Very high reuse rates

AGI = Annual Global Impact (2010) *PB* = *Planetary Boundary*

Earth-to-Earth transportation

Year 2050

Mars colonisation

Typical launch window year

	25% SUPERSON	NIC AVIATION	25% LONG-HAUL AVIATION			CARGO-TO-PERSON 1:1		CARGO-TO-PERSON 10	
LAUNCHES/DAY	16		103		LAUNCHES/DAY	33		181	
CITIES CONNECTED DAILY	4		10			AGI	РВ	AGI	РВ
	AGI	PB	AGI	PB	AIR ACIDIFICATION	6.2%	2.4%	33.8%	13.0%
AIR ACIDIFICATION	3.0%	1.1%	18.7%	7.2%	CLIMATE CHANGE	0.3%	2.6%	1.7%	14.3%
CLIMATE CHANGE	0.2%	1.3%	1.0%	8.4%	OZONE DEPLETION	460.0%	143.7%	2530.0%	790.1%
OZONE DEPLETION	227.0%	70.9%	1437.5%	449.0%	BLACK CARBON EMISSIONS	x290		×1580	
BLACK CARBON EMISSIONS / BASELINE	5 x140		x860		/ BASELINE				

Mitigation?

- → Low carbon LOx & methane production does not act on BC emissions and other high-altitude effects
- → Low carbon LH2 does not act on other high-altitude effects
- → Such high demands in low carbon fuels would enter in conflict with global decarbonization efforts

Conclusion and implications

Planned large space projects would (constellations, tourism, Moon missions, SBSP)

- Make the impacts of the space sector on Earth significant, mainly due to high-altitude effects
- Exacerbate environmental inequalities (tourism)
- Threaten astronomical observation (light pollution constellations)
- Undermine the sustainability of the space environment (space debris constellations)

Speculative projects would (Earth-to-Earth, Mars colonisation)

- · Have prohibitive impacts on the Earth's environment
- Lead to very high energy and materials demand in a context of growing scarcity and turmoil

Environmental sustainability stands as a major constraint to intense space activities

- Large scale space resource use for consumption on Earth (minerals, energy,...)
- Democratized space tourism
- Put polluting industries in space
- Making humanity a multiplanetary species
- ٠

Findings point towards a different narrative of the future of humanity in space

Contribution

Evaluation of the environmental impacts of future proposed space projects over the period 2021-2050 through a streamlined LCA

- · Review and synthesis of plans proposed by actors of the space sector for the future
- Evaluation of the impacts of different types of space activities, many of which for the first time
- · Assessment based on real plans and systems
- Use of best available estimates and highlighting of critical knowledge gaps
- Findings analyzed in the context of global ecological situation to provide a systemic view

Environmental sus	tainability of future prop	oosed space activities	
- Ignor Generation Advicesy Council, 31 ¹ Astropose Contro of Readings, Departs ¹ Speer Learning System Analysis (IAB).	Ree Deputs Desian, 1900, Ants, Brave unit of Michaeled & Annyano Bigheering, Universi 5, German Annyana Center (IEEE), Germany	ty of Straductures, 75 Minuteneor Street, Stangerer, 111 232, 138	
ARTICLEIRPO	A # 5 T # A C T		
Life Cyth Americani Honesoniad Ingel Apen andraid Apen gene Polini Polini Konadio	their companyments on the D present a strendball Life () on plane the small life () on many strendball of the () smaller, the strendball of the () smaller, the strendball of the strendball strendball of the strendball queue strendball of the strendball queue strendball of the official queue strendball of the official strendball is a decoder strendball or the strendball of the strendball which is a decoder strendball or the strendball of the strendball and strendball of the strendball of the strendball of the strendball of the strendball which is a decoder strendball or the strendball of the strendball of the strendball of the strendball of the strendball and strendball of the strendball of the strendball of the strendball of the strendball of the strendball of the strendball of the strendball of the strendball of the strendball of the strendball of the strendball of the strendball of the strendball of the strendball of the strendball of the strendball of the strendball of the st	with a more many, which are yet providy increas. To adduce the charmonic of the interpret of the space strength of the point fluc- tions of the environmental impacts of the space strengt of they are the strength of the space strength of the space strengt of the strength of the strength of the space strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of a strength of the str	se this gap, this ere as 2022 to 2450 base were readand. Lar re considered in a fit included in two off ad space systems a classification of the impacts of 0 or in the impacts of 0 or sold from larger or noval global impact to redistive balance eviatio and poorly to depicts would hours
	tened on Earth and Marca at combined, while also available planetary broadbars. The or availability and by the entains in entry. Compared, while the source of astronse queues activity and at a propulsity could get entry and any and any and any any entry and any any any any any any promoval considerations in a systema design.	e measure, constituti inductom fieta quenciativos galema el relación en el de facilitar en estar de meditar en estar de meditar en estar de meditar el de estar de	artern remain large to have greaters to pro- other harmon sortiviti all global imports a large sortium of the sortium field of the sortium of the factor in the develo- factor in the development point of the sortium of the
 Introductions The space sector is undergoin down by a set of individuality of data is a significant decrement const. This enables new surdness more maintenam spinor fundality. 	were at their and the one of the patientsy bandlars. The any standard state of the second state of the state of the second state of the state of the state state of the state of the state of the second state of the state of the state second state of the state of the state of the second state of the state of the state of the second state of the state of th	ensures, sequences and setup status of the sequences produced with the setup status of the setup status	even senaria longe there beneficiation opti- ther hauses activity of global impacts a bell instead by rough energies of the senaria of the features, political a distant hereastic and the senaria political and distant and see object located systems and for instead of the senaria distant and see object located systems and located systems and distant and see object located systems and located systems and distant and see object located systems and distant and di

Miraux, L., Wilson, A. R., & Calabuig, G. J. D. (2022). Environmental sustainability of future proposed space activities. *Acta Astronautica*, https://doi.org/10.1016/j.actaastro.2022.07.034

Coordinated by

Loïs Miraux Independent Space Generation Advisory Council lois.miraux@mines-paristech.fr

<u>Authors</u>

Andrew Ross Wilson Aerospace Centre of Excellence, Department of Mechanical & Aerospace Engineering, University of Strathclyde Space Generation Advisory Council andrew.r.wilson@strath.ac.uk

Guillermo J. Dominguez Calabuig Space Launcher System Analysis (SART), German Aerospace Center (DLR) Space Generation Advisory Council guillermo.dominguezcalabuig@dlr.de

Space Safety &

Sustainability

Project Group

SPACE GENERATION ADVISORY COUNCIL

Emissions indices and characterisation factors

Emissions indices [g/kg of propellant]												
	N2	CO2	CO	H2O	H2	ClOx	HOx	NOx	HCI	Al2O3	BC	
METHALOX	0.0	378.2	164.3	449.3	0.0	16.0	3.0	1.0	0.0	0.0	0.8	v25
KEROLOX	0.0	451.2	254.7	287.8	60.0	16.0	3.0	1.0	0.0	50.0	20.0	X23
HYDROLOX	0.0	0.0	0.0	992.0	248.0	16.0	3.0	1.0	0.0	0.0	0.0	
AP AL/HTPB	80.0	108.0	16.2	384.0	96.0	80.0	15.0	5.0	150.0	330.0	0.0	

Characterisation factors

	N2	CO2	CO	H2O	H2	ClOx	HOx	NOx	HCI	Al2O3	BC
AIR ACIDIFICATION [kg SO2eq]	0	0	0	0	0	0	0	0.7	0.88	0	0
CLIMATE CHANGE [kg CO2eq]	0	1	1.57	0.06	0	0	0	114	0	0	0 (reference) 1166 (sensitivity)
OZONE DEPLETION [kg CFC-11eq]	0	0	0	0	0	0.7	0.7	0.7	0.7	0	0

Limitations

Incompleteness of proposed plans and lack of data availability, leading to various assumptions to model space activities → not full representativity Limited scope → underestimates No technological progress Highly simplified modeling of the impacts of launches

Constellations: results

Evolution of the number of launches and payload mass launched of baseline and constellation activities

Source of impacts over 2021-2050 period

Sensitivity analysis: BC and re-entry NOx

Increase in LCIA results

	IMPACT CATEGORY	LOW GROWTH SCENARIO	MODERATE GROWTH SCENARIO	HIGH GROWTH SCENARIO
	Air acidification	6%	22%	23%
RE-ENTRY NOx	Climate change	5%	15%	15%
	Ozone depletion	12%	22%	22%
BLACK CARBON	Climate change	36%	29%	28%

Mitigation of the impacts of speculative plans?

Demand in low carbon fuels of EtE and Mars colonisation activities compared to the global demand in IEA projections based on stated policies or sustainable development scenarios (both in 2040).

		BIOMETHANE		LOW CARBON H2 (ELECTROLYSIS + CCUS)				
	MASS REQUIRED (MT)	IEA SPS	IEA SDS	MASS REQUIRED (MT)	IEA APS	IEA NZE		
SSA-25	5.9	8% (23%)*	3% (13%)	2.7	3% (14%)	1% (5%)		
LHA	37.5	50% (143%)	18% (84%)	17.2	17% (86%)	5% (34%)		
MARS LAUNCH WINDOW 100K	2.9	4% (11%)	1% (6%)	1.3	1% (7%)	0% (3%)		
MARS LAUNCH WINDOW 1M	28.8	38% (110%)	14% (64%)	13.2	13% (66%)	4% (26%)		

*Numbers in parenthesis indicate the share of the demand in the transport sector.