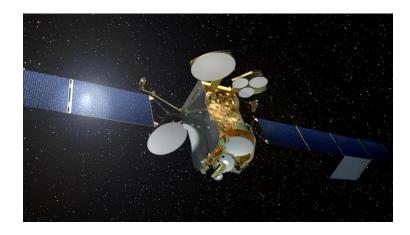


DEFENCE AND SPACE

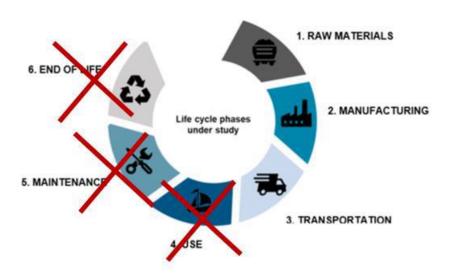
Catarina Val ESA Clean Space Industrial Days 11 October 2022


Agenda

The Eurostar Neo Battery
LCA study cope definition
Pack decomposition and Assembly Processes
Data Quality Rating in line with ESA LCA guidelines
LCA results: Relative impact contribution of each defined component
Normalisation
Alternative Scenarios
Critical Raw Materials (CRM) Assessment

The Eurostar Neo Battery

- Integrated in Eurostar Neo satellites
- Manufactured by ADS up to two times per year
- Up to 27 kW
- Lithium-ion cells
- Cells assembled into modules
- Modules assembled into 2 packs (>250 kg)



LCA of the Eurostar Neo Battery: Scope definition

System boundaries (Cradle to gate)

- Raw material extraction or production
- Production of the different parts
- Transportation from supplier to ADS (only for cell and for collectors suppliers)

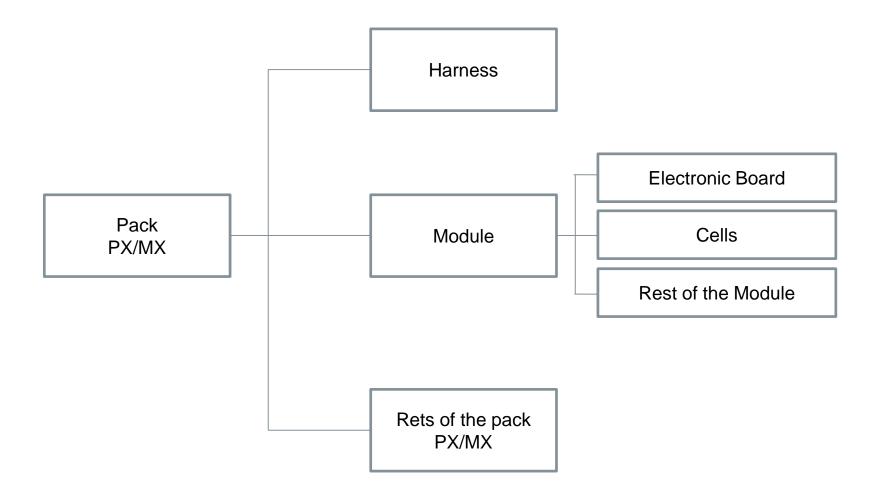
Functional Unit

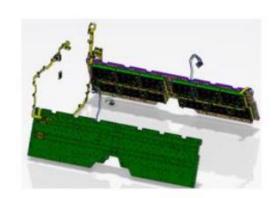
"the production of one Eurostar Neo Battery" by Airbus Defence and Space in Toulouse.

= 1 PX pack and 1 MX pack

Data sources

Battery centre from ADS, in Toulouse


- 1st step: Components and weight breakdown + description of production steps.
- 2nd step: Set of interviews for further details on each process and material composition.


LCI databases and scientific publications

3rd step: Literature review, in particular for the cells.

Pack decomposition

Pack PX/MX

The module


- Composed by:
 - 180 lithium-ion cells
 - Base plate / 0,5 kg
 - Metallic collectors
 - Electronic board / 0,142 kg
 - Other : fixing, support
- Total mass: 10,9 kg
- All 23 modules integrated in the packs have the same structure.

The lithium-ion cells

- Standard lithium-ion cell
- Manufactured in Asia
- Type NMC 811 Cathodes (nickel/manganese/cobalt)
- Graphite-Silicon Anodes
- Dimensions: 18*65 mm
- Total mass: 47g

The module assembly process

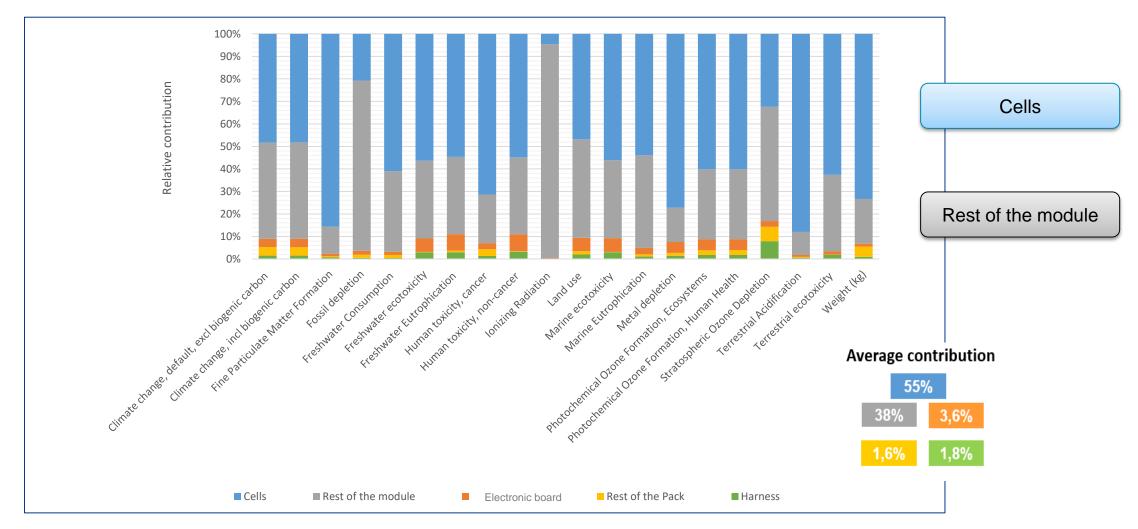
Data Quality Rating in line with ESA LCA guidelines

Technological Representativeness

Geographical representativeness

Time-related representativeness

Completeness

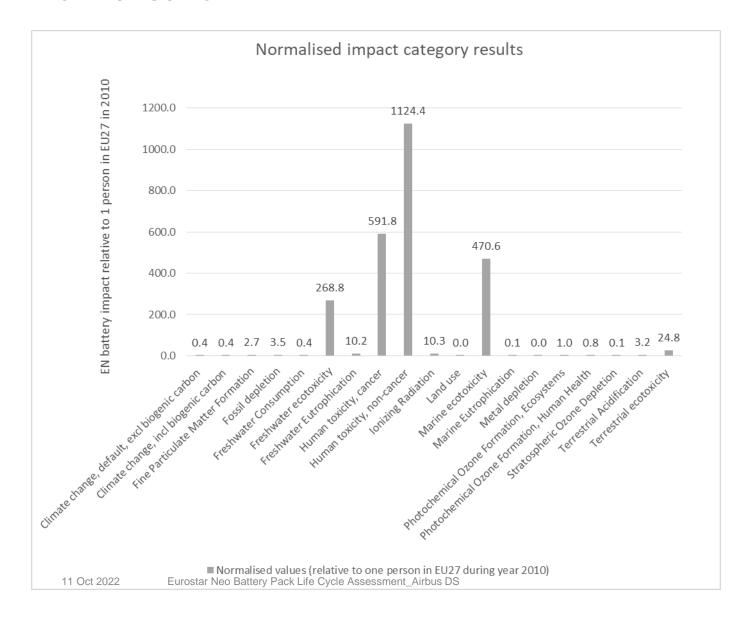

Precision/ uncertainly

Methodological appropriateness and consistency

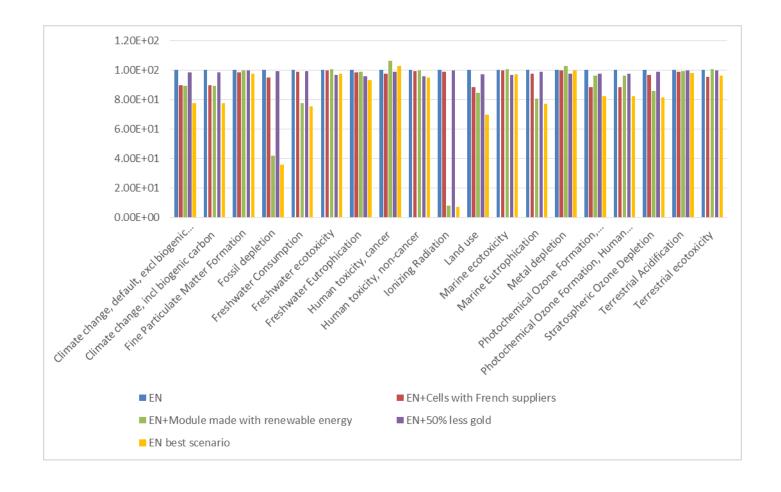
Project: Date:	LCI dataset: Reviewer:						
Indicator	Sub-quality parameters	Rating 1 (Excellent)	2 (Very Good)	3 (Good)	4 (Fair)	5 (Poor)	
TeR	Expert judgement based on the consideration of the production process and materials	Technology aspects have been modelled using data from enterprises, processes and materials under study	Technology aspects have been modelled using data from processes and materials under study but from different enterprises	Technology aspects have been modelled using data from processes and materials under study but from different technology	Technology aspects have been modelled using data related to process or materials but the same technology	Technology aspects ha been modelled on relat processes or materials different technology o unknown	
GR	Expert judgement based on geographical coverage of data	Involve data from the specific area under study	Involved average data from a larger area in which the area under study is included	Involved data from an area with similar production conditions	Involved data from an area with slightly similar production conditions	Involved data from unknown area or area w very different production conditions or unknown	
TIR	Expert judgement based on defined time on data inventory	All the data sources refer to the defined time and are ≤3 years of difference to year of study	Most of the data sources refer to the defined time and are 3 to 6 years difference	At least half of the data sources refer to the defined time and are 5 to 10 years difference	Less than half of the data sources refer to the defined time and are 10 to 15 years difference	None of the data source refer to the defined time age of data is unknown is ≥15 years of different	
c	Consideration of impact categories and share of elementary flows (to adjust the final rating)	>80% of Process completeness determined flows have been evaluated and given a value, and ≥15 considered impact categories	60-79% of determined flows have been evaluated and given a value, and 12-14 considered impact categories	40-59% of determined flows have been evaluated and given a value and, 8-11 considered impact categories	<40% of determined flows have been evaluated and given a value, and 5-7 considered impact categories	Process completeness not scored unknown, and ≤5 considered impact categories	
Pι	Expert judgement based on the precision/uncertainty of data sources	Very low uncertainty and/or very high precision	Low uncertainty and/or high precision	Fair uncertainty and/or fair precision	High uncertainty and/or low precision	Very high uncertainty and/or very low precision unknown	
м	Definition of situation context and subsequent expert judgement of system boundaries, multi- functionality and EoL	In dusion of all LCA stages (with the EoL stage). Consideration of allocation procedures. Completion in a very high degree	Inclusion of most relevant LCA stages. Consideration of allocation procedures. Completion in a high degree	Inclusion of a still sufficient LCA stages. Consideration of allocation procedures. Completion in a sufficient degree	Inclusion of sufficient LCA stages. Consideration of allocation procedures. Completion in a low degree	No inclusion of sufficient L stages. No consideration allocation procedures (mult functionality has no been solved according to situation context). Complet in a low degree or unknown	

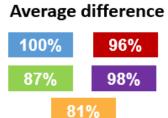
LCA results: Relative impact contribution of each defined component

Cells



Rest of the module


Normalisation


- FE, HT/HTN and ME exhibit significant values due to cell and module production:
- Nickel present in the cathode
- Cooper present in the anode
- Metallic collectors

Alternative Scenarios

- 1. Cells supplied by a French supplier
- 2. Module manufactured using renewable energy source (such as a wind farm)
- 3. 50% less gold on electronic parts (harness, electronic board)
- 4. The best scenario with all of the above points implemented.

Critical Raw Materials (CRM) Assessment

• **CRM:** Materials that have high economic importance for the EU and whose supply is associated with high risk. The list includes 27 raw materials that are now considered critical by the European Commission.

(Source: Methodology on CRMs 2017 by the European Union)

- CRM contribute approximately 15 wt.% of the battery pack
- Lithium and cobalt used in the cathode
- Graphite and silicon used in the anode
- Bauxite, Magnesium, Phosphorus and Titanium used in other components

Proportion by weight of CRM making up the 15 wt.% CRM in the Eurostar Neo battery pack, Adapted from Critical Raw Materials: Assessment of usage, Associated risks and recommended Mitigation actions, ADS 2022

Questions

For any questions, do not hesitate to contact us:

Catarina Val ana_catarina.val@airbus.com
Ariane Bouilly ariane.bouilly@airbus.com
Julien Weber julien.weber@airbus.com
Ecodesign@Airbus ecodesign.ds@airbus.com

Thank you

© Copyright Airbus (Airbus Defence and Space 2022) / Life Cycle Assessment of the Eurostar Neo Battery Pack

This document and all information contained herein is the sole property of Airbus. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the expressed written consent of Airbus. This document and its content shall not be used for any purpose other than that for which it is supplied.

Airbus, its logo and product names are registered trademarks.

