

University of Stuttgart Institute of Space Systems

A Comprehensive Approach to Life Cycle Assessment of Space Transport Systems

Clean Space Industry Days ESTEC, Noordwijk 12. October 2022

J.-S. Fischer, S. Fasoulas

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

Motivation

Development of orbital launches

2

Project "Life Cycle Assessment of Space Transportation Systems Research Goals

Launch Emissions

University of Stuttgart

Re-Entry

Space System Life Cycle Assessment (LCA) Guidelines [1] \rightarrow 20 Environmental Indicators

University of Stuttgart

Production

Production

High Impact of production

 Launch ready system has already 98% of its GWP

Booster and core stage have the higest impact (85 – 90%)

No absolute values published

Fig. 2: Results of Ariane 6 LCA [2]

Production

Measures in the Project

- Cooperation with ArianeGroup to close knowledge gaps
 - Project "Analysis of the Production of Launcher Systems Using the Example of Ariane 6 "
 - Development of a generic dataset for analysis
- Life cycle assessment studies
 - Identification of Hot-Spots
 - Comparison of different launch system architectures
 - Comparison of different materials
 - Comparison of different propellant systems
 - Analysis of alternative processes

7

Launch Emissions

Stoichiometric calculation

Name	Reaction equation	Mass equation	
LOX/LH2	$H_2 + 0.5 O_2 \to H_2 O$	$1 \text{ kg H}_2 + 7.94 \text{ kg O}_2 \rightarrow 8.94 \text{ kg H}_2\text{O}$	
LOX/CH4	$\mathrm{CH}_4 + 2 \ \mathrm{O}_2 \rightarrow \mathrm{CO}_2 + \mathrm{H}_2\mathrm{O}$	1 kg CH ₄ + 3.99 kg O ₂ → 2.74 kg CO ₂ + 2.25 kg H ₂ O	
LOX/RP-1	$C_{12}H_{23.4} + 17.9 O_2 \rightarrow 12 CO_2 + 11.7 H_2O$	1 kg $C_{12}H_{23.4}$ + 3.41 kg O_2 → 3.15 kg CO_2 + 1.26 kg H_2O	
NTO/MMH	$CH_6N_2 + 1.25 N_2O_4 \rightarrow CO_2 + 3 H_2O + 2.25 N_2$	1 kg CH_6N_2 + 2.50 kg N_2O_4 → 0.96 kg CO_2 + 1.17 kg H_2O + 1.37 kg N_2	
NTO/UDMH	$C_2H_8N_2 + 2 N_2O_4 \rightarrow 2 CO_2 + 4 H_2O + 3 N_2$	1 kg C ₂ H ₈ N ₂ + 3.06 kg N ₂ O ₄ → 1.46 kg CO ₂ + 1.20 kg H ₂ O + 1.40 kg N ₂	
AP+AI+HTPB	$NH_4ClO_4 \rightarrow 0.5 N_2 + HCl + 1.5 H_2O + 1.3 O_2$	1 kg NH ₄ ClO ₄ → 0.12 kg N ₂ + 0.31 kg HCl + 0.23 kg H ₂ O	
University of Stuttgart	$1 \text{ Al} + 0.8 \text{ O}_2 \rightarrow 0.5 \text{ Al}_2 \text{ O}_3$	+ 0.34 kg O_2 1 kg Al + 0.89 kg $O_2 \rightarrow 1.89$ kg Al ₂ O_2	
	$(C_4H_6)_{50}(OH)_2 + 274.5 O_2$ $\rightarrow 200 CO_2 + 151 H_2O$	$1 \text{ kg } (C_4 \text{H}_6)_{50} (\text{OH})_2 + 3.21 \text{ kgO}_2 \rightarrow 3.21 \text{ kg CO}_2 + 1.0 \text{ kg H}_2 \text{O}_{10/5/2022} 9$	

Analytic calculation (CEA)

Species	LOX/LH ₂	LOX/CH ₄	LOX/RP-1(N_2O_4/CH_6N_2 (MMH)	$N_2O_4/C_2H_8N_2$ (UDMH)
	(6.2:1)	(3.8:1)	2.6:1)		(2.05:1)	(2.67:1)
СО	-	8.43	30.10	СО	8.46	8.33
CO_2	-	43.90	40.17	CO_2	18.02	26.81
Н	0.25	0.02	0.02	Η	<0.01	<0.01
HO ₂	0.01	< 0.01	-	H ₂	0.67	0.34
H ₂	3.36	0.24	0.66	H_2O	32.44	29.62
H_2O	88.5	43.74	28.79	NO	-	0.01
H_2O_2	< 0.01	-	-	N ₂	40.40	34.85
0	0.48	0.12	0.01	OH	0.01	0.04
ОН	6.26	1.45	0.24	02	-	<0.01
02	1.09	2.09	0.03			

Tab. 2a: Analytic calculation of emissions

- → Simple stoichiometric calculation is not sufficient
- → Analysis of trace gases is necessary

Analytic calculation (CEA)

	$NH_4ClO_4/$	N ₂ 0/HTPB
	Al/HTPB	(5.2:1)
	(69:19:12)	
AlCl	0.01	-
AlCl ₂	<0.01	-
AlCl ₃	<0.01	-
AlOH	<0.01	-
AlOHCl ₂	<0.01	-
$Al(OH)_2Cl$	< 0.01	-
СО	21.89	20.13
CO_2	1.48	8.76
Cl	0.22	-
Η	0.58	<0.01
HCl	16.00	-
H ₂	30.22	10.15
H ₂ O	11.58	11.82
NO	<0.01	-
N ₂	8.26	49.00
ОН	0.04	-
$Al_2O_3(s)$	4.98	-
$Al_2O_3(l)$	4.74	-

Tab. 2b: Analytic calculation of the emissions

University of Stuttgart

Afterburning

- Conversion of kinetic in thermal energy
- Complex gasdynamic processes
- Mixture with ambient air
- → Burning of propellant residues
- → Formation of thermal NOx

Impacts of emissions Impacts on climate

- CO2
- CO
- Ruß
- → Kerosene rocket GWP factor 10⁵
- AI2O3
- → Great uncertainty

Impacts of emissions Impacts on ozone

Ozone cycle

- NOx
- Chlorine
- Hydroxyl-radicals
- Iron
- Aluminia (heterogenous)
- PSC (heterogenous)
- Soot (heterogenous + temperature increase)

Impacts of emissions Further effects

Fig. 7: Polaric Mesospheric Clouds [6]

- Increased formation of PMC after launches
- → uncertain impact on RF
- Impacts on Ionosphere

Impacts of emissions Human Health

Fig. 8: Dropped and disposed rocket stage [7]

- Fuel residues e.g. hydrazine
- 7.7.10⁶ km² in Kazakhstan "zone of ecological disaster"
- carcinogenic, mutagenic, convulsive, teratogenic and embryotoxic effects

Impacts of emissions

Environmental damage

Fig. 9: Impact on vegetation [8]

- Acid formation due to HCI
- → Fish kill
- Deposition on vegetation
- Reduction in quantity & diversity of plants
- Normalisation after cessation of launch activities

Measurement of Emissions

Airborne Measurements

- Passage through exhaust plume
- → Measurement of temporary ozone depletion
- → Measurement of exhaust gas composition
- No ozone depletion during night

Fig. 10: Measured ozone depletion [9]

Fig. 11: Measurment aircraft of NASA [10]

Simulation of emissions

Local effects

0 0.21	0.42 0.63 0.84 1.05	T	STATE AND
0.000+10 1.420+42	2 2.840e-42 4.260e-42 5.680e-42 7.100e	_α X _{CO₂}	
0.00e+00 3.80e0	02 7.80e-02 1.14e-01 1.52e-01 1.90	eor X _{H20}	
0.000 0.00	7 0.014 0.021 0.028 0.035	, X _{ci}	
0.0e+00 3.0e-0)4 6.0e-04 9.0e-04 1.2e-03 1.5e-0	₃₃ X _{Cl₂}	in which
= 0	x = 33 D _e	x = 67 D _e	x = 130 De

- Chemical reaction models
- CFD calculations
- → missing verification

Fig. 12: CFD-simulation of rocket plumes [11]

University of Stuttgart

Simulation of emissions

Global effects on climate

Author	Method	Scenario	RF [mW/m ²]
Bekki	3D	6 Ariane 5	0.06
DeSain	Analytic	Launches 1985-2013	2.1
Larson	NOCAR/ WACCM	10 ⁵ LOX/LH2	30
Ross	WACCM3	1000 Hybrid	100
Ross	Analytic	Launches 2013	16±8
Ryan	GEOS- Chem + RRTMG	Launches 2019 +5,4%/y for 10 years	3.9
Ryan	GEOS- Chem + RRTMG	Space Tourism 3- Years	7.9

Tab. 3: Simulationen zu den Klimaauswirkungen

Fig. 13: Share of RF [12]

- Total anthropogenic RF 2.72 W/m2 (+0.43 W/m2 2014 2021)
 - \rightarrow Space launches 2019: 0.3 mW/m2 \rightarrow 0.56% annually
 - → Tourism scenario: 2.6 mW/m2 → 4.9% annually
- Aviation RF 2018: 100.9 mW/ m2 () University of Stuttgart

Global impact on ozone

Fig. 14: Share of ozone depletion [12]

- Ozone recovery due to Montreal Protocol ~+81 ppbv
 → 10 years impact -8,5 ppbv (10%)
- Global ozone depletion
 ~2,2% to 1964-1980

Autor	Method	Scenario	Ozone local [%]	Ozone global [%]
Bekki	3D	6 Ariane 5	-0.1	-0.011
Bennett	Analytic	9 Space Shuttle, 6 Titan IV	-	-0.012
Danilin	3D	9 Space Shuttle, 4 Titan IV	-0.07	-0.034
DeSain	Analytic	Launches 1985- 2013	-	-0.189
Jackman	2D	Space Shuttle, Titan III/IV Launches 1975-1997	-	-0.025
Jackman	2D	9 Space Shuttle, 3 Titan IV	-	-0.099
Jackman	2D	9 Space Shuttle, 3 Titan IV	-0.14	-0.05
Jones	2D	10 Ariane 5	-	-0.08
Potter	?	60 Space Shuttle	-0.3	-
Prather	AEF, GSFC, GISS	9 Space Shuttle, 6 Titan IV	-0.25	<-0.1
Ross	2D	10 Proton Launches	-	-0.00012
Ross	WAACCM3	1000 Hybrid	-6	-1
Ryan	GEOS- Chem + RRTMG	Launches 2019	-0.15	-0.01

Tab. 4: Simulations regarding ozone depletion

Launch emissions

Measures in the project

- Simulation of rocket plume emissions and afterburning
 - Approximate calculation using CEA
 - CFD calculation of emissions
- Simulation of emissions using common atmospheric models
 - Open-source models (WAACM, GEOS-Chem)
- Possible measurement campaign scenarios
 - Ground-based measurements (emission spectroscopy, gas chromatography)
 - Aircraft-based measurements (aerosols, gas composition)
 - Satellite-based measurements (emission and ozone data)

Emissions during re-entry

Characterisation

University of Stuttgart

Fig. 15: Sheme of re-entry emissions [13]

Emissions during re-entry

Comparison to natural sources

Fig. 16: Masses of aluminium emitted into the earth's atmosphere

University of Stuttgart

Emissions during re-entry

Measures in the project

- Simulation of emissions
- Measurement campaigns
 - Emission spectroscopy
 - Particle distribution analysis

Fig. 17: IRS activities

Conclusion

- Production
 - Significant contribution but limited insight
 - LCA and ecodesign to reduce
- Start emissions
 - no significant impact at the moment
 - at other scales, however, critical in terms of ozone depletion
- Re-entry emissions
 - Only little researched
 - Aluminium emissions in the same order of magnitude as natural sources
- \rightarrow Further research activites necessary

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

Acknowledgements

German Space Agency, funding reference 50RL2180

Sources

[1] ESA LCA Working Group, Space system Life Cycle Assessment (LCA) guidelines: ESSB-HB-U-005, 1st ed., 2016.

[2] A. Gallice, T. Maury, E. del Olmo, Environmental Impact of the Exploitation of the Ariane 6 Launcher System, in: Clean Space Industrial Days, Noordwijk, Netherlands, 2018.

[3] F. Simmons, Rocket Exhaust Plume Phenomenology, American Institute of Aeronautics and Astronautics, Inc, Washington, DC, 2000.

[4] M.N. Ross, K.L. Jones, Implications of a growing spaceflight industry: Climate change, Journal of Space Safety Engineering (2022). [5] BBC

[6] NASA

[7] Jonas Bendiksen/Magnum

[8] C.R. Hall, P.A. Schmalzer, D.R. Breininger, B.W. Duncan, J.H. Drese, D.A. Scheidt et al., Ecological impacts of the space Shuttle Program at John F. Kennedy Space Center, Florida, 2014.

[9] M.N. Ross, J.R. Benbrook, W.R. Sheldon, P.F. Zittel, D.L. McKenzie, Observation of stratospheric ozone depletion in rocket exhaust plumes, Nature 390 (1997) 62–64.

[10] NASA

[11] R. Paoli, A. Poubeau, D. Cariolle, Large-Eddy Simulations of a Reactive Solid Rocket Motor Plume, AIAA Journal 58 (2020) 1639–1656.

[12] R.G. Ryan, E.A. Marais, C.J. Balhatchet, S.D. Eastham, Impact of Rocket Launch and Space Debris Air Pollutant Emissions on Stratospheric Ozone and Global Climate, Earth's Future 10 (2022) e2021EF002612.

[13] A.S. Pagan, Dissertation, University of Stuttgart, 2021 (ongoing)

Thank you!

Jan-Steffen Fischer, M.Sc.

e-mail fischerj@irs.uni-stuttgart.de phone +49 (0) 711 685- 69628 www.irs.uni-stuttgart.de

University of Stuttgart Institute of Space Systems Pfaffenwaldring 29 70569 Stuttgart